Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Anal Chem ; 94(43): 14878-14888, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36265550

RESUMEN

Subcellular protein-protein interactions (PPIs) are essential to understanding the mechanism of diverse cellular signaling events and the pathogenesis of diseases. Herein, we report an integrated APEX proximity labeling and chemical cross-linking coupled with mass spectrometry (CXMS) platform named APEX-CXMS for spatially resolved subcellular interactome profiling in a high-throughput manner. APEX proximity labeling rapidly captures subcellular proteomes, and the highly reactive chemical cross-linkers can capture weak and dynamic interactions globally without extra genetic manipulation. APEX-CXMS was first applied to mitochondria and identified 653 pairs of interprotein cross-links. Six pairs of new interactions were selected and verified by coimmunoprecipitation, the mammalian two-hybrid system, and surface plasmon resonance method. Besides, our approach was further applied to the nucleus, capturing 336 pairs of interprotein cross-links with approximately 94% nuclear specificity. APEX-CXMS thus provides a simple, fast, and general alternative to map diverse subcellular PPIs.


Asunto(s)
Mamíferos , Proteínas , Animales , Proteínas/química , Reactivos de Enlaces Cruzados/química , Espectrometría de Masas/métodos
2.
J Hepatol ; 73(2): 361-370, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32135178

RESUMEN

BACKGROUND & AIMS: Obesity is a well-established risk factor for type 2 diabetes (T2D) and non-alcoholic steatohepatitis (NASH), but the underlying mechanisms remain incompletely understood. Herein, we aimed to identify novel pathogenic factors (and possible therapeutic targets) underlying metabolic dysfunction in the liver. METHODS: We applied a tandem quantitative proteomics strategy to enrich and identify transcription factors (TFs) induced in the obese liver. We used flow cytometry of liver cells to analyze the source of the induced TFs. We employed conditional knockout mice, shRNA, and small-molecule inhibitors to test the metabolic consequences of the induction of identified TFs. Finally, we validated mouse data in patient liver biopsies. RESULTS: We identified PU.1/SPI1, the master hematopoietic regulator, as one of the most upregulated TFs in livers from diet-induced obese (DIO) and genetically obese (db/db) mice. Targeting PU.1 in the whole liver, but not hepatocytes alone, significantly improved glucose homeostasis and suppressed liver inflammation. Consistently, treatment with the PU.1 inhibitor DB1976 markedly reduced inflammation and improved glucose homeostasis and dyslipidemia in DIO mice, and strongly suppressed glucose intolerance, liver steatosis, inflammation, and fibrosis in a dietary NASH mouse model. Furthermore, hepatic PU.1 expression was positively correlated with insulin resistance and inflammation in liver biopsies from patients. CONCLUSIONS: These data suggest that the elevated hematopoietic factor PU.1 promotes liver metabolic dysfunction, and may be a useful therapeutic target for obesity, insulin resistance/T2D, and NASH. LAY SUMMARY: Expression of the immune regulator PU.1 is increased in livers of obese mice and people. Blocking PU.1 improved glucose homeostasis, and reduced liver steatosis, inflammation and fibrosis in mouse models of non-alcoholic steatohepatitis. Inhibition of PU.1 is thus a potential therapeutic strategy for treating obesity-associated liver dysfunction and metabolic diseases.


Asunto(s)
Ratones Obesos/metabolismo , Enfermedad del Hígado Graso no Alcohólico , Proteínas Proto-Oncogénicas , Transactivadores , Animales , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Dieta Alta en Grasa , Hepatocitos/metabolismo , Humanos , Hígado/patología , Ratones , Ratones Noqueados , Terapia Molecular Dirigida , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/metabolismo , ARN Interferente Pequeño/metabolismo , Transactivadores/antagonistas & inhibidores , Transactivadores/metabolismo , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/metabolismo , Regulación hacia Arriba
3.
Angew Chem Int Ed Engl ; 54(22): 6604-7, 2015 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-25853638

RESUMEN

The selective radical/radical cross-coupling of two different organic radicals is a great challenge due to the inherent activity of radicals. In this paper, a copper-catalyzed radical/radical C(sp 3)-H/P-H cross-coupling has been developed. It provides a radical/radical cross-coupling in a selective manner. This work offers a simple way toward ß-ketophosphonates by oxidative coupling of aryl ketone o-acetyloximes with phosphine oxides using CuCl as catalyst and PCy3 as ligand in dioxane under N2 atmosphere at 130 °C for 5 h, and yields ranging from 47% to 86%. The preliminary mechanistic studies by electron paramagnetic resonance (EPR) showed that, 1) the reduction of ketone o-acetyloximes generates iminium radicals, which could isomerize to α-sp(3) -carbon radical species; 2) phosphorus radicals were generated from the oxidation of phosphine oxides. Various aryl ketone o-acetyloximes and phosphine oxides were suitable for this transformation.

4.
Adv Sci (Weinh) ; 11(25): e2401583, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38659239

RESUMEN

The nonselective calcium-permeable Transient Receptor Potential Cation Channel Subfamily V Member4 (TRPV4) channel regulates various physiological activities. Dysfunction of TRPV4 is linked to many severe diseases, including edema, pain, gastrointestinal disorders, lung diseases, and inherited neurodegeneration. Emerging TRPV4 antagonists show potential clinical benefits. However, the molecular mechanisms of TRPV4 antagonism remain poorly understood. Here, cryo-electron microscopy (cryo-EM) structures of human TRPV4 are presented in-complex with two potent antagonists, revealing the detailed binding pockets and regulatory mechanisms of TRPV4 gating. Both antagonists bind to the voltage-sensing-like domain (VSLD) and stabilize the channel in closed states. These two antagonists induce TRPV4 to undergo an apparent fourfold to twofold symmetry transition. Moreover, it is demonstrated that one of the antagonists binds to the VSLD extended pocket, which differs from the canonical VSLD pocket. Complemented with functional and molecular dynamics simulation results, this study provides crucial mechanistic insights into TRPV4 regulation by small-molecule antagonists, which may facilitate future drug discovery targeting TRPV4.


Asunto(s)
Microscopía por Crioelectrón , Canales Catiónicos TRPV , Canales Catiónicos TRPV/antagonistas & inhibidores , Canales Catiónicos TRPV/metabolismo , Canales Catiónicos TRPV/química , Canales Catiónicos TRPV/genética , Humanos , Microscopía por Crioelectrón/métodos , Simulación de Dinámica Molecular , Sitios de Unión
5.
Front Physiol ; 14: 1062034, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36866173

RESUMEN

Background and Objective: Bone age detection plays an important role in medical care, sports, judicial expertise and other fields. Traditional bone age identification and detection is according to manual interpretation of X-ray images of hand bone by doctors. This method is subjective and requires experience, and has certain errors. Computer-aided detection can effectually enhance the validity of medical diagnosis, especially with the fast development of machine learning and neural network, the method of bone age recognition using machine learning has gradually become the focus of research, which has the advantages of simple data pretreatment, good robustness and high recognition accuracy. Methods: In this paper, the hand bone segmentation network based on Mask R-CNN was proposed to segment the hand bone area, and the segmented hand bone region was directly input into the regression network for bone age evaluation. The regression network is using an enhancd network Xception of InceptionV3. After the output of Xception, the convolutional block attention module is connected to refine the feature mapping from channel and space to obtain more effective features. Results: According to the experimental results, the hand bone segmentation network model based on Mask R-CNN can segment the hand bone region and eliminate the interference of redundant background information. The average Dice coefficient on the verification set is 0.976. The mean absolute error of predicting bone age on our data set was only 4.97 months, which exceeded the accuracy of most other bone age assessment methods. Conclusion: Experiments show that the accuracy of bone age assessment can be enhancd by using the Mask R-CNN-based hand bone segmentation network and the Xception bone age regression network to form a model, which can be well applied to actual clinical bone age assessment.

6.
Biophys Rep ; 8(5-6): 239-252, 2022 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37287876

RESUMEN

Transient and weak protein-protein interactions are essential to many biochemical reactions, yet are technically challenging to study. Chemical cross-linking of proteins coupled with mass spectrometry analysis (CXMS) provides a powerful tool in the analysis of such interactions. Central to this technology are chemical cross-linkers. Here, using two transient heterodimeric complexes EIN/HPr and EIIAGlc/EIIBGlc as our model systems, we evaluated the effects of two amine-specific homo-bifunctional cross-linkers with different reactivities. We showed previously that DOPA2 (di-ortho-phthalaldehyde with a di-ethylene glycol spacer arm) cross-links proteins 60-120 times faster than DSS (disuccinimidyl suberate). We found that though most of the intermolecular cross-links of either cross-linker are consistent with the encounter complexes (ECs), an ensemble of short-lived binding intermediates, more DOPA2 intermolecular cross-links could be assigned to the stereospecific complex (SC), the final lowest-energy conformational state for the two interacting proteins. Our finding suggests that faster cross-linking captures the SC more effectively and cross-linkers of different reactivities potentially probe protein-protein interaction dynamics across multiple timescales.

7.
Nat Commun ; 13(1): 1468, 2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35304446

RESUMEN

Chemical cross-linking of proteins coupled with mass spectrometry is widely used in protein structural analysis. In this study we develop a class of non-hydrolyzable amine-selective di-ortho-phthalaldehyde (DOPA) cross-linkers, one of which is called DOPA2. Cross-linking of proteins with DOPA2 is 60-120 times faster than that with the N-hydroxysuccinimide ester cross-linker DSS. Compared with DSS cross-links, DOPA2 cross-links show better agreement with the crystal structures of tested proteins. More importantly, DOPA2 has unique advantages when working at low pH, low temperature, or in the presence of denaturants. Using staphylococcal nuclease, bovine serum albumin, and bovine pancreatic ribonuclease A, we demonstrate that DOPA2 cross-linking provides abundant spatial information about the conformations of progressively denatured forms of these proteins. Furthermore, DOPA2 cross-linking allows time-course analysis of protein conformational changes during denaturant-induced unfolding.


Asunto(s)
Desplegamiento Proteico , o-Ftalaldehído , Reactivos de Enlaces Cruzados/química , Espectrometría de Masas/métodos , Conformación Proteica , Albúmina Sérica Bovina/química
8.
Anal Chim Acta ; 1102: 53-62, 2020 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-32043996

RESUMEN

Chemical cross-linking would conceivably cause structural disruption of a protein, but few cross-linkers have been fully evaluated in this aspect. Furthermore, integral membrane proteins may differ from soluble proteins in the selection of suitable cross-linkers, which has never been investigated. In this study, we systematically evaluated the impact of five conventional cross-linkers targeting Lys, Asp and Glu, and two Arg-reactive cross-linkers on the structural and functional integrity of two G protein-coupled receptors (GPCRs). Perturbation of the receptor structure and ligand-binding activity was observed, depending on the receptor and cross-linking conditions. In particular, our study demonstrated that the concentrations of PDH and KArGO need to be fine-tuned in order to minimize the structural and functional disturbance of specific GPCRs. A set of amenable cross-linkers was selected to acquire the most comprehensive cross-link maps for two GPCRs. Our in-depth cross-linking mass spectrometry (CXMS) analysis has revealed dynamic features of structural regions in GPCRs that are not observable in the crystal structures. Thus, CXMS analysis of GPCRs using the expanded toolkit would facilitate structural modeling of uncharacterized receptors and gain new insights into receptor-ligand interactions.


Asunto(s)
Reactivos de Enlaces Cruzados/química , Receptor del Péptido 1 Similar al Glucagón/química , Receptores Adrenérgicos alfa 2/química , Cromatografía en Gel , Cromatografía Liquida , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Ligandos , Simulación de Dinámica Molecular , Conformación Proteica , Estabilidad Proteica , Receptores Adrenérgicos alfa 2/metabolismo , Espectrometría de Masas en Tándem/métodos
9.
Nat Commun ; 10(1): 3911, 2019 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-31477730

RESUMEN

Chemical cross-linking of proteins coupled with mass spectrometry analysis (CXMS) is widely used to study protein-protein interactions (PPI), protein structures, and even protein dynamics. However, structural information provided by CXMS is still limited, partly because most CXMS experiments use lysine-lysine (K-K) cross-linkers. Although superb in selectivity and reactivity, they are ineffective for lysine deficient regions. Herein, we develop aromatic glyoxal cross-linkers (ArGOs) for arginine-arginine (R-R) cross-linking and the lysine-arginine (K-R) cross-linker KArGO. The R-R or K-R cross-links generated by ArGO or KArGO fit well with protein crystal structures and provide information not attainable by K-K cross-links. KArGO, in particular, is highly valuable for CXMS, with robust performance on a variety of samples including a kinase and two multi-protein complexes. In the case of the CNGP complex, KArGO cross-links covered as much of the PPI interface as R-R and K-K cross-links combined and improved the accuracy of Rosetta docking substantially.


Asunto(s)
Arginina/química , Reactivos de Enlaces Cruzados/química , Lisina/química , Espectrometría de Masas/métodos , Proteínas/química , Algoritmos , Arginina/metabolismo , Lisina/metabolismo , Modelos Moleculares , Estructura Molecular , Péptidos/química , Péptidos/metabolismo , Conformación Proteica , Mapas de Interacción de Proteínas , Proteínas/metabolismo
10.
Elife ; 72018 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-30412053

RESUMEN

Leukemia stem cells (LSCs) are regarded as the origins and key therapeutic targets of leukemia, but limited knowledge is available on the key determinants of LSC 'stemness'. Using single-cell RNA-seq analysis, we identify a master regulator, SPI1, the LSC-specific expression of which determines the molecular signature and activity of LSCs in the murine Pten-null T-ALL model. Although initiated by PTEN-controlled ß-catenin activation, Spi1 expression and LSC 'stemness' are maintained by a ß-catenin-SPI1-HAVCR2 regulatory circuit independent of the leukemogenic driver mutation. Perturbing any component of this circuit either genetically or pharmacologically can prevent LSC formation or eliminate existing LSCs. LSCs lose their 'stemness' when Spi1 expression is silenced by DNA methylation, but Spi1 expression can be reactivated by 5-AZ treatment. Importantly, similar regulatory mechanisms may be also present in human T-ALL.


Asunto(s)
Regulación de la Expresión Génica , Células Madre Neoplásicas/fisiología , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patología , Proteínas Proto-Oncogénicas/metabolismo , Transactivadores/metabolismo , Animales , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Receptor 2 Celular del Virus de la Hepatitis A/metabolismo , Ratones , Proteínas Proto-Oncogénicas/genética , Análisis de Secuencia de ARN , Transactivadores/genética , beta Catenina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA