Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nat Methods ; 14(6): 621-628, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28504679

RESUMEN

Approaches to differentiating pluripotent stem cells (PSCs) into neurons currently face two major challenges-(i) generated cells are immature, with limited functional properties; and (ii) cultures exhibit heterogeneous neuronal subtypes and maturation stages. Using lineage-determining transcription factors, we previously developed a single-step method to generate glutamatergic neurons from human PSCs. Here, we show that transient expression of the transcription factors Ascl1 and Dlx2 (AD) induces the generation of exclusively GABAergic neurons from human PSCs with a high degree of synaptic maturation. These AD-induced neuronal (iN) cells represent largely nonoverlapping populations of GABAergic neurons that express various subtype-specific markers. We further used AD-iN cells to establish that human collybistin, the loss of gene function of which causes severe encephalopathy, is required for inhibitory synaptic function. The generation of defined populations of functionally mature human GABAergic neurons represents an important step toward enabling the study of diseases affecting inhibitory synaptic transmission.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Diferenciación Celular/genética , Neuronas GABAérgicas/citología , Neuronas GABAérgicas/fisiología , Proteínas de Homeodominio/genética , Células Madre Pluripotentes/fisiología , Factores de Transcripción/genética , Animales , Ingeniería Celular , Células Cultivadas , Humanos , Ratones , Células Madre Pluripotentes/citología
2.
Nature ; 491(7422): 109-13, 2012 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-23041929

RESUMEN

Cortical inhibitory circuits are formed by γ-aminobutyric acid (GABA)-secreting interneurons, a cell population that originates far from the cerebral cortex in the embryonic ventral forebrain. Given their distant developmental origins, it is intriguing how the number of cortical interneurons is ultimately determined. One possibility, suggested by the neurotrophic hypothesis, is that cortical interneurons are overproduced, and then after their migration into cortex the excess interneurons are eliminated through a competition for extrinsically derived trophic signals. Here we characterize the developmental cell death of mouse cortical interneurons in vivo, in vitro and after transplantation. We found that 40% of developing cortical interneurons were eliminated through Bax (Bcl-2-associated X)-dependent apoptosis during postnatal life. When cultured in vitro or transplanted into the cortex, interneuron precursors died at a cellular age similar to that at which endogenous interneurons died during normal development. Over transplant sizes that varied 200-fold, a constant fraction of the transplanted population underwent cell death. The death of transplanted neurons was not affected by the cell-autonomous disruption of TrkB (tropomyosin kinase receptor B), the main neurotrophin receptor expressed by neurons of the central nervous system. Transplantation expanded the cortical interneuron population by up to 35%, but the frequency of inhibitory synaptic events did not scale with the number of transplanted interneurons. Taken together, our findings indicate that interneuron cell death is determined intrinsically, either cell-autonomously or through a population-autonomous competition for survival signals derived from other interneurons.


Asunto(s)
Apoptosis , Interneuronas/citología , Neocórtex/citología , Animales , Animales Recién Nacidos , Caspasa 3/metabolismo , Recuento de Células , Supervivencia Celular , Senescencia Celular/fisiología , Femenino , Potenciales Postsinápticos Inhibidores , Interneuronas/metabolismo , Interneuronas/trasplante , Masculino , Glicoproteínas de Membrana/deficiencia , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Neocórtex/crecimiento & desarrollo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Células-Madre Neurales/trasplante , Proteínas Tirosina Quinasas/deficiencia , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , Células Piramidales/citología , Células Piramidales/metabolismo , Proteína X Asociada a bcl-2/deficiencia , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo
3.
Proc Natl Acad Sci U S A ; 112(9): 2888-93, 2015 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-25695968

RESUMEN

Gi-GPCRs, G protein-coupled receptors that signal via Gα proteins of the i/o class (Gαi/o), acutely regulate cellular behaviors widely in mammalian tissues, but their impact on the development and growth of these tissues is less clear. For example, Gi-GPCRs acutely regulate insulin release from pancreatic ß cells, and variants in genes encoding several Gi-GPCRs--including the α-2a adrenergic receptor, ADRA2A--increase the risk of type 2 diabetes mellitus. However, type 2 diabetes also is associated with reduced total ß-cell mass, and the role of Gi-GPCRs in establishing ß-cell mass is unknown. Therefore, we asked whether Gi-GPCR signaling regulates ß-cell mass. Here we show that Gi-GPCRs limit the proliferation of the insulin-producing pancreatic ß cells and especially their expansion during the critical perinatal period. Increased Gi-GPCR activity in perinatal ß cells decreased ß-cell proliferation, reduced adult ß-cell mass, and impaired glucose homeostasis. In contrast, Gi-GPCR inhibition enhanced perinatal ß-cell proliferation, increased adult ß-cell mass, and improved glucose homeostasis. Transcriptome analysis detected the expression of multiple Gi-GPCRs in developing and adult ß cells, and gene-deletion experiments identified ADRA2A as a key Gi-GPCR regulator of ß-cell replication. These studies link Gi-GPCR signaling to ß-cell mass and diabetes risk and identify it as a potential target for therapies to protect and increase ß-cell mass in patients with diabetes.


Asunto(s)
Proliferación Celular , Diabetes Mellitus Tipo 2/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Células Secretoras de Insulina/metabolismo , Receptores Adrenérgicos alfa 2/metabolismo , Transducción de Señal , Animales , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patología , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Glucosa/genética , Glucosa/metabolismo , Células Secretoras de Insulina/patología , Ratones , Ratones Transgénicos , Receptores Adrenérgicos alfa 2/genética
4.
Proc Natl Acad Sci U S A ; 111(51): 18339-44, 2014 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-25489113

RESUMEN

GABAergic inhibition has been shown to play an important role in the opening of critical periods of brain plasticity. We recently have shown that transplantation of GABAergic precursors from the embryonic medial ganglionic eminence (MGE), the source of neocortical parvalbumin- (PV(+)) and somatostatin-expressing (SST(+)) interneurons, can induce a new period of ocular dominance plasticity (ODP) after the endogenous period has closed. Among the diverse subtypes of GABAergic interneurons PV(+) cells have been thought to play the crucial role in ODP. Here we have used MGE transplantation carrying a conditional allele of diphtheria toxin alpha subunit and cell-specific expression of Cre recombinase to deplete PV(+) or SST(+) interneurons selectively and to investigate the contributions of each of these types of interneurons to ODP. As expected, robust plasticity was observed in transplants containing PV(+) cells but in which the majority of SST(+) interneurons were depleted. Surprisingly, transplants in which the majority of PV(+) cells were depleted induced plasticity as effectively as those containing PV(+) cells. In contrast, depleting both cell types blocked induction of plasticity. These findings reveal that PV(+) cells do not play an exclusive role in ODP; SST(+) interneurons also can drive cortical plasticity and contribute to the reshaping of neural networks. The ability of both PV(+) and SST(+) interneurons to induce de novo cortical plasticity could help develop new therapeutic approaches for brain repair.


Asunto(s)
Trasplante de Células , Interneuronas/citología , Eminencia Media/embriología , Plasticidad Neuronal , Parvalbúminas/metabolismo , Somatostatina/metabolismo , Animales , Interneuronas/metabolismo , Eminencia Media/citología , Ratones , Ratones Endogámicos C57BL
5.
Ann Clin Transl Neurol ; 11(3): 812-818, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38229454

RESUMEN

Optic pathway gliomas (OPGs) arising in children with neurofibromatosis type 1 (NF1) can cause retinal ganglion cell (RGC) dysfunction and vision loss, which occurs more frequently in girls. While our previous studies demonstrated that estrogen was partly responsible for this sexually dimorphic visual impairment, herein we elucidate the underlying mechanism. In contrast to their male counterparts, female Nf1OPG mice have increased expression of glial interleukin-1ß (IL-1ß), which is neurotoxic to RGCs in vitro. Importantly, both IL-1ß neutralization and leuprolide-mediated estrogen suppression decrease IL-1ß expression and ameliorate RGC dysfunction, providing preclinical proof-of-concept evidence supporting novel neuroprotective strategies for NF1-OPG-induced vision loss.


Asunto(s)
Neurofibromatosis 1 , Glioma del Nervio Óptico , Humanos , Niño , Masculino , Femenino , Ratones , Animales , Glioma del Nervio Óptico/metabolismo , Células Ganglionares de la Retina , Interleucina-1beta/metabolismo , Trastornos de la Visión , Estrógenos/farmacología , Estrógenos/metabolismo
6.
Cancer Manag Res ; 15: 667-681, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37465080

RESUMEN

Optic pathway glioma (OPG) occurs in as many as one-fifth of individuals with the neurofibromatosis type 1 (NF1) cancer predisposition syndrome. Generally considered low-grade and slow growing, many children with NF1-OPGs remain asymptomatic. However, due to their location within the optic pathway, ~20-30% of those harboring NF1-OPGs will experience symptoms, including progressive vision loss, proptosis, diplopia, and precocious puberty. While treatment with conventional chemotherapy is largely effective at attenuating tumor growth, it is not clear whether there is much long-term recovery of visual function. Additionally, because these tumors predominantly affect young children, there are unique challenges to NF1-OPG diagnosis, monitoring, and longitudinal management. Over the past two decades, the employment of authenticated genetically engineered Nf1-OPG mouse models have provided key insights into the function of the NF1 protein, neurofibromin, as well as the molecular and cellular pathways that contribute to optic gliomagenesis. Findings from these studies have resulted in the identification of new molecular targets whose inhibition blocks murine Nf1-OPG growth in preclinical studies. Some of these promising compounds have now entered into early clinical trials. Future research focused on defining the determinants that underlie optic glioma initiation, expansion, and tumor-induced optic nerve injury will pave the way to personalized risk assessment strategies, improved tumor monitoring, and optimized treatment plans for children with NF1-OPG.

7.
Cell Rep ; 16(5): 1391-1404, 2016 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-27425623

RESUMEN

The maturation of inhibitory GABAergic cortical circuits regulates experience-dependent plasticity. We recently showed that the heterochronic transplantation of parvalbumin (PV) or somatostatin (SST) interneurons from the medial ganglionic eminence (MGE) reactivates ocular dominance plasticity (ODP) in the postnatal mouse visual cortex. Might other types of interneurons similarly induce cortical plasticity? Here, we establish that caudal ganglionic eminence (CGE)-derived interneurons, when transplanted into the visual cortex of neonatal mice, migrate extensively in the host brain and acquire laminar distribution, marker expression, electrophysiological properties, and visual response properties like those of host CGE interneurons. Although transplants from the anatomical CGE do induce ODP, we found that this plasticity reactivation is mediated by a small fraction of MGE-derived cells contained in the transplant. These findings demonstrate that transplanted CGE cells can successfully engraft into the postnatal mouse brain and confirm the unique role of MGE lineage neurons in the induction of ODP.


Asunto(s)
Corteza Cerebral/metabolismo , Neuronas GABAérgicas/metabolismo , Ganglión/metabolismo , Interneuronas/metabolismo , Eminencia Media/metabolismo , Plasticidad Neuronal/fisiología , Animales , Movimiento Celular/fisiología , Corteza Cerebral/fisiología , Neuronas GABAérgicas/fisiología , Interneuronas/fisiología , Ratones , Ratones Endogámicos C57BL , Parvalbúminas/metabolismo , Somatostatina/metabolismo , Corteza Visual/metabolismo , Corteza Visual/fisiología
8.
Elife ; 4: e05558, 2015 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-25626167

RESUMEN

The adult brain continues to learn and can recover from injury, but the elements and operation of the neural circuits responsible for this plasticity are not known. In previous work, we have shown that locomotion dramatically enhances neural activity in the visual cortex (V1) of the mouse (Niell and Stryker, 2010), identified the cortical circuit responsible for this enhancement (Fu et al., 2014), and shown that locomotion also dramatically enhances adult plasticity (Kaneko and Stryker, 2014). The circuit that is responsible for enhancing neural activity in the visual cortex contains both vasoactive intestinal peptide (VIP) and somatostatin (SST) neurons (Fu et al., 2014). Here, we ask whether this VIP-SST circuit enhances plasticity directly, independent of locomotion and aerobic activity. Optogenetic activation or genetic blockade of this circuit reveals that it is both necessary and sufficient for rapidly increasing V1 cortical responses following manipulation of visual experience in adult mice. These findings reveal a disinhibitory circuit that regulates adult cortical plasticity.


Asunto(s)
Envejecimiento/fisiología , Inhibición Neural/fisiología , Plasticidad Neuronal/fisiología , Corteza Visual/fisiología , Animales , Predominio Ocular/fisiología , Ratones Endogámicos C57BL , Neuronas/fisiología , Carrera/fisiología , Somatostatina/metabolismo , Transmisión Sináptica/fisiología , Péptido Intestinal Vasoactivo/metabolismo
9.
Cell Stem Cell ; 12(5): 573-86, 2013 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-23642366

RESUMEN

Directed differentiation from human pluripotent stem cells (hPSCs) has seen significant progress in recent years. However, most differentiated populations exhibit immature properties of an early embryonic stage, raising concerns about their ability to model and treat disease. Here, we report the directed differentiation of hPSCs into medial ganglionic eminence (MGE)-like progenitors and their maturation into forebrain type interneurons. We find that early-stage progenitors progress via a radial glial-like stem cell enriched in the human fetal brain. Both in vitro and posttransplantation into the rodent cortex, the MGE-like cells develop into GABAergic interneuron subtypes with mature physiological properties along a prolonged intrinsic timeline of up to 7 months, mimicking endogenous human neural development. MGE-derived cortical interneuron deficiencies are implicated in a broad range of neurodevelopmental and degenerative disorders, highlighting the importance of these results for modeling human neural development and disease.


Asunto(s)
Diferenciación Celular , Interneuronas/citología , Neurogénesis , Prosencéfalo/citología , Potenciales de Acción , Animales , Biomarcadores/metabolismo , Diferenciación Celular/genética , División Celular/genética , Neuronas GABAérgicas/citología , Neuronas GABAérgicas/metabolismo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Interneuronas/metabolismo , Eminencia Media/citología , Ratones , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neurogénesis/genética , Neuroglía/citología , Neuroglía/metabolismo , Proteínas Nucleares/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Sinapsis/metabolismo , Telencéfalo/citología , Factor Nuclear Tiroideo 1 , Factores de Tiempo , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA