Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 299(11): 105278, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37742917

RESUMEN

Most immunoglobulin (Ig) domains bear only a single highly conserved canonical intradomain, inter-ß-sheet disulfide linkage formed between Cys23-Cys104, and incorporation of rare noncanonical disulfide linkages at other locations can enhance Ig domain stability. Here, we exhaustively surveyed the sequence tolerance of Ig variable (V) domain framework regions (FRs) to noncanonical disulfide linkages. Starting from a destabilized VH domain lacking a Cys23-Cys104 disulfide linkage, we generated and screened phage-displayed libraries of engineered VHs, bearing all possible pairwise combinations of Cys residues in neighboring ß-strands of the Ig fold FRs. This approach identified seven novel Cys pairs in VH FRs (Cys4-Cys25, Cys4-Cys118, Cys5-Cys120, Cys6-Cys119, Cys22-Cys88, Cys24-Cys86, and Cys45-Cys100; the international ImMunoGeneTics information system numbering), whose presence rescued domain folding and stability. Introduction of a subset of these noncanonical disulfide linkages (three intra-ß-sheet: Cys4-Cys25, Cys22-Cys88, and Cys24-Cys86, and one inter-ß-sheet: Cys6-Cys119) into a diverse panel of VH, VL, and VHH domains enhanced their thermostability and protease resistance without significantly impacting expression, solubility, or binding to cognate antigens. None of the noncanonical disulfide linkages identified were present in the natural human VH repertoire. These data reveal an unexpected permissiveness of Ig V domains to noncanonical disulfide linkages at diverse locations in FRs, absent in the human repertoire, whose presence is compatible with antigen recognition and improves domain stability. Our work represents the most complete assessment to date of the role of engineered noncanonical disulfide bonding within FRs in Ig V domain structure and function.


Asunto(s)
Región Variable de Inmunoglobulina , Humanos , Secuencia de Aminoácidos , Técnicas de Visualización de Superficie Celular , Región Variable de Inmunoglobulina/química , Región Variable de Inmunoglobulina/genética , Región Variable de Inmunoglobulina/metabolismo , Dominios Proteicos/genética , Escherichia coli/genética , Pliegue de Proteína
2.
FASEB J ; 34(6): 8155-8171, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32342547

RESUMEN

Prolonged serum half-life is required for the efficacy of most protein therapeutics. One strategy for half-life extension is to exploit the long circulating half-life of serum albumin by incorporating a binding moiety that recognizes albumin. Here, we describe camelid single-domain antibodies (VH Hs) that bind the serum albumins of multiple species with moderate to high affinity at both neutral and endosomal pH and significantly extend the serum half-lives of multiple proteins in rats from minutes to days. We serendipitously identified an additional VH H (M75) that is naturally pH-sensitive: at endosomal pH, binding affinity for human serum albumin (HSA) was dramatically weakened and binding to rat serum albumin (RSA) was undetectable. Domain mapping revealed that M75 bound to HSA domain 1 and 2. Moreover, alanine scanning of HSA His residues suggested a critical role for His247, located in HSA domain 2, in M75 binding and its pH dependence. Isothermal titration calorimetry experiments were suggestive of proton-linked binding of M75 to HSA, with differing binding enthalpies observed for full-length HSA and an HSA domain 1-domain 2 fusion protein in which surface-exposed His residues were substituted with Ala. M75 conferred moderate half-life extension in rats, from minutes to hours, likely due to rapid dissociation from RSA during FcRn-mediated endosomal recycling in tandem with albumin conformational changes induced by M75 binding that prevented interaction with FcRn. Humanized VH Hs maintained in vivo half-life extension capabilities. These VH Hs represent a new set of tools for extending protein therapeutic half-life and one (M75) demonstrates a unique pH-sensitive binding interaction that can be exploited to achieve modest in vivo half-life.


Asunto(s)
Productos Biológicos/metabolismo , Albúmina Sérica/metabolismo , Animales , Línea Celular , Endosomas/metabolismo , Células HEK293 , Semivida , Humanos , Concentración de Iones de Hidrógeno , Masculino , Unión Proteica/fisiología , Ratas , Ratas Wistar
3.
Biochem J ; 476(1): 39-50, 2019 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-30455372

RESUMEN

Up-regulation of epidermal growth factor receptor (EGFR) is a hallmark of many solid tumors, and inhibition of EGFR signaling by small molecules and antibodies has clear clinical benefit. Here, we report the isolation and functional characterization of novel camelid single-domain antibodies (sdAbs or VHHs) directed against human EGFR. The source of these VHHs was a llama immunized with cDNA encoding human EGFR ectodomain alone (no protein or cell boost), which is notable in that genetic immunization of large, outbred animals is generally poorly effective. The VHHs targeted multiple sites on the receptor's surface with high affinity (KD range: 1-40 nM), including one epitope overlapping that of cetuximab, several epitopes conserved in the cynomolgus EGFR orthologue, and at least one epitope conserved in the mouse EGFR orthologue. Interestingly, despite their generation against human EGFR expressed from cDNA by llama cells in vivo (presumably in native conformation), the VHHs exhibited wide and epitope-dependent variation in their apparent affinities for native EGFR displayed on tumor cell lines. As fusions to human IgG1 Fc, one of the VHH-Fcs inhibited EGFR signaling induced by EGF binding with a potency similar to that of cetuximab (IC50: ∼30 nM). Thus, DNA immunization elicited high-affinity, functional sdAbs that were vastly superior to those previously isolated by our group through protein immunization.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Camélidos del Nuevo Mundo/inmunología , ADN/farmacología , Inmunización , Anticuerpos de Dominio Único/inmunología , Animales , Línea Celular Tumoral , ADN/inmunología , Receptores ErbB/genética , Receptores ErbB/inmunología , Células HEK293 , Humanos , Masculino
4.
Immunol Cell Biol ; 97(6): 526-537, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30680791

RESUMEN

Human IgG1 and IgG3 antibodies (Abs) can mediate Ab-dependent cellular cytotoxicity (ADCC), and engineering of the Ab Fc (point mutation; defucosylation) has been shown to affect ADCC by modulating affinity for FcRγIIIa. In the absence of a CH 1 domain, many camelid heavy-chain Abs (HCAbs) naturally bear very long and flexible hinge regions connecting their VH H and CH 2 domains. To better understand the influence of hinge length and structure on HCAb ADCC, we produced a series of hinge-engineered epidermal growth factor receptor (EGFR)-specific chimeric camelid VH H-human Fc Abs and characterized their affinities for recombinant EGFR and FcRγIIIa, their binding to EGFR-positive tumor cells, and their ability to elicit ADCC. In the case of one chimeric HCAb (EG2-hFc), we found that variants bearing longer hinges (IgG3 or camelid hinge regions) showed dramatically improved ADCC in comparison with a variant bearing the human IgG1 hinge, in similar fashion to a variant with reduced CH 2 fucosylation. Conversely, an EG2-hFc variant bearing a truncated human IgG1 upper hinge region failed to elicit ADCC. However, there was no consistent association between hinge length and ADCC for four similarly engineered chimeric HCAbs directed against distinct EGFR epitopes. These findings demonstrate that the ADCC of some HCAbs can be modulated simply by varying the length of the Ab hinge. Although this effect appears to be heavily epitope-dependent, this strategy may be useful to consider during the design of VH H-based therapeutic Abs for cancer.


Asunto(s)
Adenocarcinoma/terapia , Anticuerpos Monoclonales/metabolismo , Neoplasias de la Mama/terapia , Inmunoterapia/métodos , Proteínas Recombinantes de Fusión/genética , Adenocarcinoma/inmunología , Animales , Anticuerpos Monoclonales/genética , Afinidad de Anticuerpos , Citotoxicidad Celular Dependiente de Anticuerpos , Neoplasias de la Mama/inmunología , Camelidae , Línea Celular Tumoral , Receptores ErbB/inmunología , Receptores ErbB/metabolismo , Femenino , Humanos , Fragmentos Fc de Inmunoglobulinas/genética , Inmunoglobulina G/genética , Cadenas Pesadas de Inmunoglobulina/genética , Región Variable de Inmunoglobulina/genética , Mutación/genética , Unión Proteica , Ingeniería de Proteínas
5.
Int J Mol Sci ; 20(9)2019 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-31035322

RESUMEN

Approximately one fifth of all malignancies worldwide are etiologically associated with a persistent viral or bacterial infection. Thus, there is a particular interest in therapeutic molecules which use components of a natural immune response to specifically inhibit oncogenic microbial proteins, as it is anticipated they will elicit fewer off-target effects than conventional treatments. This concept has been explored in the context of human papillomavirus 16 (HPV16)-related cancers, through the development of monoclonal antibodies and fragments thereof against the viral E6 oncoprotein. Challenges related to the biology of E6 as well as the functional properties of the antibodies themselves appear to have precluded their clinical translation. Here, we addressed these issues by exploring the utility of the variable domains of camelid heavy-chain-only antibodies (denoted as VHHs). Through construction and panning of two llama, immune VHH phage display libraries, a pool of potential VHHs was isolated. The interactions of these with recombinant E6 were further characterized using an enzyme-linked immunosorbent assay (ELISA), Western blotting under denaturing and native conditions, and surface plasmon resonance. Three VHHs were identified that bound recombinant E6 with nanomolar affinities. Our results lead the way for subsequent studies into the ability of these novel molecules to inhibit HPV16-infected cells in vitro and in vivo.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Papillomavirus Humano 16/inmunología , Proteínas Oncogénicas Virales/inmunología , Proteínas Represoras/inmunología , Ensayo de Inmunoadsorción Enzimática , Humanos , Biblioteca de Péptidos , Anticuerpos de Dominio Único/inmunología
6.
J Biol Chem ; 289(4): 2331-43, 2014 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-24311789

RESUMEN

Clostridium difficile infection is a serious and highly prevalent nosocomial disease in which the two large, Rho-glucosylating toxins TcdA and TcdB are the main virulence factors. We report for the first time crystal structures revealing how neutralizing and non-neutralizing single-domain antibodies (sdAbs) recognize the receptor-binding domains (RBDs) of TcdA and TcdB. Surprisingly, the complexes formed by two neutralizing antibodies recognizing TcdA do not show direct interference with the previously identified carbohydrate-binding sites, suggesting that neutralization of toxin activity may be mediated by mechanisms distinct from steric blockage of receptor binding. A camelid sdAb complex also reveals the molecular structure of the TcdB RBD for the first time, facilitating the crystallization of a strongly negatively charged protein fragment that has resisted previous attempts at crystallization and structure determination. Electrospray ionization mass spectrometry measurements confirm the stoichiometries of sdAbs observed in the crystal structures. These studies indicate how key epitopes in the RBDs from TcdA and TcdB are recognized by sdAbs, providing molecular insights into toxin structure and function and providing for the first time a basis for the design of highly specific toxin-specific therapeutic and diagnostic agents.


Asunto(s)
Anticuerpos Antibacterianos/química , Proteínas Bacterianas/química , Toxinas Bacterianas/química , Clostridioides difficile/química , Enterotoxinas/química , Epítopos/química , Anticuerpos de Cadena Única/química , Animales , Anticuerpos Antibacterianos/inmunología , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/genética , Proteínas Bacterianas/inmunología , Toxinas Bacterianas/antagonistas & inhibidores , Toxinas Bacterianas/genética , Toxinas Bacterianas/inmunología , Clostridioides difficile/genética , Clostridioides difficile/inmunología , Cristalografía por Rayos X , Enterotoxinas/antagonistas & inhibidores , Enterotoxinas/genética , Enterotoxinas/inmunología , Epítopos/genética , Epítopos/inmunología , Humanos , Estructura Terciaria de Proteína , Anticuerpos de Cadena Única/inmunología , Relación Estructura-Actividad
7.
Biochim Biophys Acta ; 1844(11): 1983-2001, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25065345

RESUMEN

Monoclonal antibodies are a remarkably successful class of therapeutics used to treat a wide range of indications. There has been growing interest in smaller antibody fragments such as Fabs, scFvs and domain antibodies in recent years. In particular, the development of human VH and VL single-domain antibody therapeutics, as stand-alone affinity reagents or as "warheads" for larger molecules, are favored over other sources of antibodies due to their perceived lack of immunogenicity in humans. However, unlike camelid heavy-chain antibody variable domains (VHHs) which almost unanimously resist aggregation and are highly stable, human VHs and VLs are prone to aggregation and exhibit poor solubility. Approaches to reduce VH and VL aggregation and increase solubility are therefore very active areas of research within the antibody engineering community. Here we extensively chronicle the various mutational approaches that have been applied to human VHs and VLs to improve their biophysical properties such as expression yield, thermal stability, reversible unfolding and aggregation resistance. In addition, we describe stages of the VH and VL development process where these mutations could best be implemented. This article is part of a Special Issue entitled: Recent advances in molecular engineering of antibody.

8.
Appl Microbiol Biotechnol ; 99(20): 8549-62, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25936376

RESUMEN

Clostridium difficile is a leading cause of death from gastrointestinal infections in North America. Antibiotic therapy is effective, but the high incidence of relapse and the rise in hypervirulent strains warrant the search for novel treatments. Surface layer proteins (SLPs) cover the entire C. difficile bacterial surface, are composed of high-molecular-weight (HMW) and low-molecular-weight (LMW) subunits, and mediate adherence to host cells. Passive and active immunization against SLPs has enhanced hamster survival, suggesting that antibody-mediated neutralization may be an effective therapeutic strategy. Here, we isolated a panel of SLP-specific single-domain antibodies (VHHs) using an immune llama phage display library and SLPs isolated from C. difficile hypervirulent strain QCD-32g58 (027 ribotype) as a target antigen. Binding studies revealed a number of VHHs that bound QCD-32g58 SLPs with high affinity (K D = 3-6 nM) and targeted epitopes located on the LMW subunit of the SLP. The VHHs demonstrated melting temperatures as high as 75 °C, and a few were resistant to the gastrointestinal protease pepsin at physiologically relevant concentrations. In addition, we demonstrated the binding specificity of the VHHs to the major C. difficile ribotypes by whole cell ELISA, where all VHHs were found to bind 001 and 027 ribotypes, and a subset of antibodies were found to be broadly cross-reactive in binding cells representative of 012, 017, 023, and 078 ribotypes. Finally, we showed that several of the VHHs inhibited C. difficile QCD-32g58 motility in vitro. Targeting SLPs with VHHs may be a viable therapeutic approach against C. difficile-associated disease.


Asunto(s)
Antibacterianos/metabolismo , Anticuerpos Antibacterianos/metabolismo , Proteínas Bacterianas/antagonistas & inhibidores , Clostridioides difficile/efectos de los fármacos , Glicoproteínas de Membrana/antagonistas & inhibidores , Anticuerpos de Dominio Único/metabolismo , Antibacterianos/aislamiento & purificación , Anticuerpos Antibacterianos/aislamiento & purificación , Clostridioides difficile/fisiología , Epítopos/metabolismo , Locomoción/efectos de los fármacos , Biblioteca de Péptidos , Unión Proteica , Anticuerpos de Dominio Único/aislamiento & purificación
9.
Front Microbiol ; 14: 1110541, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36778856

RESUMEN

Crystal structures of camelid heavy-chain antibody variable domains (VHHs) bound to fragments of the combined repetitive oligopeptides domain of Clostridiodes difficile toxin A (TcdA) reveal that the C-terminus of VHH A20 was located 30 Å away from the N-terminus of VHH A26. Based on this observation, we generated a biparatopic fusion protein with A20 at the N-terminus, followed by a (GS)6 linker and A26 at the C-terminus. This A20-A26 fusion protein shows an improvement in binding affinity and a dramatic increase in TcdA neutralization potency (>330-fold [IC 50]; ≥2,700-fold [IC 99]) when compared to the unfused A20 and A26 VHHs. A20-A26 also shows much higher binding affinity and neutralization potency when compared to a series of control antibody constructs that include fusions of two A20 VHHs, fusions of two A26 VHHs, a biparatopic fusion with A26 at the N-terminus and A20 at the C-terminus (A26-A20), and actoxumab. In particular, A20-A26 displays a 310-fold (IC 50) to 29,000-fold (IC 99) higher neutralization potency than A26-A20. Size-exclusion chromatography-multiangle light scattering (SEC-MALS) analyses further reveal that A20-A26 binds to TcdA with 1:1 stoichiometry and simultaneous engagement of both A20 and A26 epitopes as expected based on the biparatopic design inspired by the crystal structures of TcdA bound to A20 and A26. In contrast, the control constructs show varied and heterogeneous binding modes. These results highlight the importance of molecular geometric constraints in generating highly potent antibody-based reagents capable of exploiting the simultaneous binding of more than one paratope to an antigen.

10.
Front Microbiol ; 14: 1167817, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37065148

RESUMEN

[This corrects the article DOI: 10.3389/fmicb.2023.1110541.].

11.
Sci Rep ; 13(1): 16498, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37779126

RESUMEN

SARS-CoV-2 subunit vaccines continue to be the focus of intense clinical development worldwide. Protein antigens in these vaccines most commonly consist of the spike ectodomain fused to a heterologous trimerization sequence, designed to mimic the compact, prefusion conformation of the spike on the virus surface. Since 2020, we have produced dozens of such constructs in CHO cells, consisting of spike variants with different mutations fused to different trimerization sequences. This set of constructs displayed notable conformational heterogeneity, with two distinct trimer species consistently detected by analytical size exclusion chromatography. A recent report showed that spike ectodomain fusion constructs can adopt an alternative trimer conformation consisting of loosely associated ectodomain protomers. Here, we applied multiple biophysical and immunological techniques to demonstrate that this alternative conformation is formed to a significant extent by several SARS-CoV-2 variant spike proteins. We have also examined the influence of temperature and pH, which can induce inter-conversion of the two forms. The substantial structural differences between these trimer types may impact their performance as vaccine antigens.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Cricetinae , Humanos , Vacunas contra la COVID-19/genética , Temperatura , Cricetulus , Antígenos , Mutación , Concentración de Iones de Hidrógeno , Anticuerpos Neutralizantes
12.
J Biol Chem ; 286(11): 8961-76, 2011 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-21216961

RESUMEN

Clostridium difficile is a leading cause of nosocomial infection in North America and a considerable challenge to healthcare professionals in hospitals and nursing homes. The gram-positive bacterium produces two high molecular weight exotoxins, toxin A (TcdA) and toxin B (TcdB), which are the major virulence factors responsible for C. difficile-associated disease and are targets for C. difficile-associated disease therapy. Here, recombinant single-domain antibody fragments (V(H)Hs), which specifically target the cell receptor binding domains of TcdA or TcdB, were isolated from an immune llama phage display library and characterized. Four V(H)Hs (A4.2, A5.1, A20.1, and A26.8), all shown to recognize conformational epitopes, were potent neutralizers of the cytopathic effects of toxin A on fibroblast cells in an in vitro assay. The neutralizing potency was further enhanced when V(H)Hs were administered in paired or triplet combinations at the same overall V(H)H concentration, suggesting recognition of nonoverlapping TcdA epitopes. Biacore epitope mapping experiments revealed that some synergistic combinations consisted of V(H)Hs recognizing overlapping epitopes, an indication that factors other than mere epitope blocking are responsible for the increased neutralization. Further binding assays revealed TcdA-specific V(H)Hs neutralized toxin A by binding to sites other than the carbohydrate binding pocket of the toxin. With favorable characteristics such as high production yield, potent toxin neutralization, and intrinsic stability, these V(H)Hs are attractive systemic therapeutics but are more so as oral therapeutics in the destabilizing environment of the gastrointestinal tract.


Asunto(s)
Anticuerpos Antibacterianos/inmunología , Anticuerpos Neutralizantes/inmunología , Toxinas Bacterianas/inmunología , Clostridioides difficile/inmunología , Enterotoxinas/inmunología , Cadenas Pesadas de Inmunoglobulina/inmunología , Anticuerpos de Cadena Única/inmunología , Animales , Anticuerpos Antibacterianos/genética , Anticuerpos Neutralizantes/genética , Toxinas Bacterianas/genética , Camélidos del Nuevo Mundo , Clostridioides difficile/genética , Enterocolitis Seudomembranosa/inmunología , Enterocolitis Seudomembranosa/terapia , Enterotoxinas/genética , Epítopos/genética , Epítopos/inmunología , Humanos , Cadenas Pesadas de Inmunoglobulina/genética , Masculino , Estructura Terciaria de Proteína , Anticuerpos de Cadena Única/genética
13.
Infect Immun ; 80(10): 3521-32, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22851750

RESUMEN

We show in this study that toxin production in Clostridium difficile is altered in cells which can no longer form flagellar filaments. The impact of inactivation of fliC, CD0240, fliF, fliG, fliM, and flhB-fliR flagellar genes upon toxin levels in culture supernatants was assessed using cell-based cytotoxicity assay, proteomics, immunoassay, and immunoblotting approaches. Each of these showed that toxin levels in supernatants were significantly increased in a fliC mutant compared to that in the C. difficile 630 parent strain. In contrast, the toxin levels in supernatants secreted from other flagellar mutants were significantly reduced compared with that in the parental C. difficile 630 strain. Transcriptional analysis of the pathogenicity locus genes (tcdR, tcdB, tcdE, and tcdA) revealed a significant increase of all four genes in the fliC mutant strain, while transcription of all four genes was significantly reduced in fliM, fliF, fliG, and flhB-fliR mutants. These results demonstrate that toxin transcription in C. difficile is modulated by the flagellar regulon. More significantly, mutant strains showed a corresponding change in virulence compared to the 630 parent strain when tested in a hamster model of C. difficile infection. This is the first demonstration of differential flagellum-related transcriptional regulation of toxin production in C. difficile and provides evidence for elaborate regulatory networks for virulence genes in C. difficile.


Asunto(s)
Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/metabolismo , Clostridioides difficile/metabolismo , Flagelos/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Factor sigma/metabolismo , Animales , Proteínas Bacterianas/genética , Toxinas Bacterianas/genética , Cricetinae , Ensayo de Inmunoadsorción Enzimática , Femenino , Flagelos/genética , Mutación , Proteómica , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , Factor sigma/genética , Transcriptoma
14.
FEBS J ; 289(14): 4304-4327, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-33751827

RESUMEN

Single-domain antibodies (sdAbs), the autonomous variable domains of camelid and shark heavy-chain antibodies, have many desirable properties as components of biologic drugs. However, their sequences may increase the risk of immunogenicity and antidrug antibody (ADA) development in humans, and thus, sdAbs are routinely humanized during development. Here, we review and summarize the available evidence regarding the factors governing immunogenicity of sdAbs and our current state of knowledge of strategies to mitigate immunogenicity risks by humanization. While several sdAb properties, including high homology of camelid VH Hs with human IGHV3 gene products, favor low immunogenicity in humans, epitopes absent in the human repertoire including the exposed VH :VL interface may be intrinsically immunogenic. While most clinical trials have demonstrated minimal sdAb immunogenicity, two notable exceptions (the tetrameric DR5-specific VH H TAS266 and the TNFR1-specific VH GSK1995057) illustrate that special caution must be taken in identifying preexisting ADAs against highly potent sdAbs. Nonhuman sequence alone does not adequately explain sdAb immunogenicity, as some camelid VH Hs are nonimmunogenic while some fully human VH s elicit ADAs. The presence of preexisting ADAs directed against the exposed C-termini of some sdAbs in a significant proportion of individuals awaits a molecular explanation. Whether sdAb humanization reduces or promotes immunogenicity remains unclear: reduction of nonhuman sequence content at the expense of introducing low-level aggregation in humanized variants may be counterproductive. Further work will establish thresholds for VH H and VNAR humanization to maximize human sequence content while avoiding loss of binding affinity and/or immunogenicity resulting from aggregation or decreased stability.


Asunto(s)
Anticuerpos de Dominio Único , Anticuerpos , Epítopos , Humanos , Cadenas Pesadas de Inmunoglobulina/genética , Anticuerpos de Dominio Único/química
15.
Commun Biol ; 5(1): 933, 2022 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-36085335

RESUMEN

Nanobodies offer several potential advantages over mAbs for the control of SARS-CoV-2. Their ability to access cryptic epitopes conserved across SARS-CoV-2 variants of concern (VoCs) and feasibility to engineer modular, multimeric designs, make these antibody fragments ideal candidates for developing broad-spectrum therapeutics against current and continually emerging SARS-CoV-2 VoCs. Here we describe a diverse collection of 37 anti-SARS-CoV-2 spike glycoprotein nanobodies extensively characterized as both monovalent and IgG Fc-fused bivalent modalities. The nanobodies were collectively shown to have high intrinsic affinity; high thermal, thermodynamic and aerosolization stability; broad subunit/domain specificity and cross-reactivity across existing VoCs; wide-ranging epitopic and mechanistic diversity and high and broad in vitro neutralization potencies. A select set of Fc-fused nanobodies showed high neutralization efficacies in hamster models of SARS-CoV-2 infection, reducing viral burden by up to six orders of magnitude to below detectable levels. In vivo protection was demonstrated with anti-RBD and previously unreported anti-NTD and anti-S2 nanobodies. This collection of nanobodies provides a potential therapeutic toolbox from which various cocktails or multi-paratopic formats could be built to combat multiple SARS-CoV-2 variants.


Asunto(s)
COVID-19 , Anticuerpos de Dominio Único , Animales , Anticuerpos Monoclonales , Cricetinae , Humanos , SARS-CoV-2/genética , Anticuerpos de Dominio Único/genética
16.
Protein Eng Des Sel ; 342021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33991089

RESUMEN

Interest in single-domain antibodies (sdAbs) stems from their unique structural/pronounced, hence therapeutically desirable, features. From the outset-as therapeutic modalities-human antibody heavy chain variable domains (VHs) attracted a particular attention compared with 'naturally-occurring' camelid and shark heavy-chain-only antibody variable domains (VHHs and VNARs, respectively) due to their perceived lack of immunogenicity. However, they have not quite lived up to their initial promise as the VH hits, primarily mined from synthetic VH phage display libraries, have too often been plagued with aggregation tendencies, low solubility and low affinity. Largely unexplored, synthetic camelized human VH display libraries appeared to have remediated the aggregation problem, but the low affinity of the VH hits still persisted, requiring undertaking additional, laborious affinity maturation steps to render VHs therapeutically feasible. A wholesome resolution has recently emerged with the development of non-canonical transgenic rodent antibody discovery platforms that appear to facilely and profusely generate high affinity, high solubility and aggregation-resistant human VHs.


Asunto(s)
Cadenas Pesadas de Inmunoglobulina , Anticuerpos de Dominio Único , Anticuerpos/genética , Humanos , Cadenas Pesadas de Inmunoglobulina/genética , Anticuerpos de Dominio Único/genética
17.
Nat Commun ; 12(1): 55, 2021 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-33397901

RESUMEN

3D printing has enabled materials, geometries and functional properties to be combined in unique ways otherwise unattainable via traditional manufacturing techniques, yet its adoption as a mainstream manufacturing platform for functional objects is hindered by the physical challenges in printing multiple materials. Vat polymerization offers a polymer chemistry-based approach to generating smart objects, in which phase separation is used to control the spatial positioning of materials and thus at once, achieve desirable morphological and functional properties of final 3D printed objects. This study demonstrates how the spatial distribution of different material phases can be modulated by controlling the kinetics of gelation, cross-linking density and material diffusivity through the judicious selection of photoresin components. A continuum of morphologies, ranging from functional coatings, gradients and composites are generated, enabling the fabrication of 3D piezoresistive sensors, 5G antennas and antimicrobial objects and thus illustrating a promising way forward in the integration of dissimilar materials in 3D printing of smart or functional parts.

18.
Anal Biochem ; 403(1-2): 117-9, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20406618

RESUMEN

Antibody heavy chain variable domains (V(H)s) form a significant class of biologics. With V(H) display libraries-the primary source of V(H) binders-unwanted aggregating V(H)s are coselected, sometimes overwhelmingly, alongside nonaggregating V(H)s. Thus, methods enabling efficient screening for nonaggregating V(H)s are highly valuable. Here, we found that on nonreducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) gels, nonaggregating V(H)s migrate faster than expected, giving underestimated molecular weights (MWs), whereas aggregating ones migrate slower, giving overestimated MWs. Our finding can be applied to large-scale screening for nonaggregating V(H)s and possibly other proteins, in particular in display library settings, by SDS-PAGE.


Asunto(s)
Electroforesis en Gel de Poliacrilamida/métodos , Cadenas Pesadas de Inmunoglobulina/química , Región Variable de Inmunoglobulina/química , Electroforesis en Gel de Poliacrilamida/economía , Ensayos Analíticos de Alto Rendimiento/economía , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos
19.
Bioconjug Chem ; 20(10): 1966-74, 2009 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-19751063

RESUMEN

Because antibodies are highly target-specific and nanoparticles possess diverse, material-dependent properties that can be exploited in order to label and potentially identify biomolecules, the development of antibody-nanoparticle conjugates (nanoconjugates) has huge potential in biodiagnostics. Here, we describe a novel superparamagnetic nanoconjugate, one whose recognition component is a single-domain antibody. It is highly active toward its target Staphylococcus aureus, displays long shelf life, lacks cross-reactivity inherent to traditional homologue whole antibodies, and captures a few dozen S. aureus cells in a mixed cell population with ~100% efficiency and specificity. We ascribe the excellent performance of our nanoconjugate to its single-domain antibody component and recommend it as a general purpose recognition element.


Asunto(s)
Anticuerpos Antibacterianos/química , Técnicas Bacteriológicas/métodos , Compuestos Férricos/química , Nanopartículas de Magnetita , Dióxido de Silicio/química , Staphylococcus aureus/aislamiento & purificación , Anticuerpos Antibacterianos/inmunología , Nanopartículas de Magnetita/química , Nanoconjugados , Estructura Terciaria de Proteína , Salmonella , Sensibilidad y Especificidad , Infecciones Estafilocócicas/diagnóstico , Staphylococcus aureus/inmunología
20.
Methods Mol Biol ; 502: 341-64, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19082566

RESUMEN

Techniques developed over the past 20 years for the display of foreign peptides and proteins on the surfaces of filamentous bacteriophages have been a major driving force in the rapid development of recombinant antibody technology in recent years. With phage display of antibodies as one of its key components, recombinant antibody technology has led to the development of an increasing number of therapeutic monoclonal antibodies. Antibody gene libraries are fused to a gene encoding a phage coat protein. Recombinant phage expressing the resulting antibody libraries in fusion with the coat protein are propagated in Escherichia coli. Phage displaying monoclonal antibodies with specificities for target antigens are isolated from the libraries by a process called panning. The genes encoding the desired antibodies selected from the libraries are packaged within the phage particles, linking genotype and phenotype. Here, we describe the application of this technology to the construction of a phage-displayed single-domain antibody (sdAb) library based on the heavy chain antibody repertoire of a llama, the panning of the library against a peptide antigen and the expression, purification, and characterization of sdAbs isolated by panning.


Asunto(s)
Anticuerpos Monoclonales/genética , Biblioteca de Péptidos , Proteínas Recombinantes/aislamiento & purificación , Modelos Biológicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA