Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Phytopathology ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38916923

RESUMEN

Yellow Dwarf Viruses (YDV) spread by aphids are some of the most economically important barley (Hordeum vulgare L.) virus-vector complexes worldwide. Detection and control of these viruses are critical components in the production of barley, wheat, and numerous other grasses of agricultural importance. Genetic control of plant diseases is often preferable to chemical control to reduce the epidemiological, environmental, and economic cost of foliar insecticides. Accordingly, the objectives of this work were to I) screen a barley population for resistance to YDV under natural infection using phenotypic assessment of disease symptoms, II) implement drone imagery to further assess resistance and test its utility as a disease screening tool, III) identify the prevailing virus and vector types in the experimental environment, and IV) perform a genome-wide association study to identify genomic regions associated with measured traits. Significant genetic differences were found in a population of 192 barley inbred lines regarding their YDV symptom severity and symptoms were moderately to highly correlated with grain yield. The severity of YDV measured with aerial imaging was highly correlated with on-the-ground estimates (r=0.65). Three aphid species vectoring three YDV species were identified with no apparent genotypic influence on their distribution. A QTL impacting YDV resistance was detected on chromosome 2H, albeit undetected using aerial imaging. However, QTL for canopy cover and mean NDVI were successfully mapped using the drone. This work provides a framework for utilizing drone imagery in future resistance breeding efforts for YDV in cereals and grasses, and in other virus-vector disease complexes.

2.
J Environ Qual ; 47(4): 830-838, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30025065

RESUMEN

Few studies have considered how methylmercury (MeHg, a toxic form of Hg produced in anaerobic soils) production in rice ( L.) fields can affect water quality, and little is known about MeHg dynamics in rice fields. Surface water MeHg and total Hg (THg) imports, exports, and storage were studied in two commercial rice fields in the Sacramento Valley, California, where soil THg was low (25 and 57 ng g). The median concentration of MeHg in drainage water exiting the fields was 0.17 ng g (range: <0.007-2.1 ng g). Compared with irrigation water, drainage water had similar MeHg concentrations, and lower THg concentrations during the growing season. Significantly elevated drainage water MeHg and THg concentrations were observed in the fallow season compared with the growing season. An analysis of surface water loads indicates that fields were net importers of both MeHg (76-110 ng m) and THg (1947-7224 ng m) during the growing season, and net exporters of MeHg (35-200 ng m) and THg (248-6496 ng m) during the fallow season. At harvest, 190 to 700 ng MeHg m and 1400 to 1700 ng THg m were removed from fields in rice grain. Rice straw, which contained 120 to 180 ng MeHg m and 7000-10,500 ng m THg was incorporated into the soil. These results indicate that efforts to reduce MeHg and THg exports in rice drainage water should focus on the fallow season. Substantial amounts of MeHg and THg were stored in plants, and these pools should be considered in future studies.


Asunto(s)
Compuestos de Metilmercurio/análisis , Oryza , Contaminantes Químicos del Agua/análisis , California , Monitoreo del Ambiente , Mercurio , Compuestos de Metilmercurio/química , Suelo , Contaminantes Químicos del Agua/química
3.
J Environ Qual ; 46(1): 133-142, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28177412

RESUMEN

Methylmercury (MeHg) is a bioaccumulative pollutant produced in and exported from flooded soils, including those used for rice ( L.) production. Using unfiltered aqueous MeHg data from MeHg monitoring programs in the Sacramento River watershed from 1996 to 2007, we assessed the MeHg contribution from rice systems to the Sacramento River. Using a mixed-effects regression analysis, we compared MeHg concentrations in agricultural drainage water from rice-dominated regions (AgDrain) to MeHg concentrations in the Sacramento and Feather Rivers, both upstream and downstream of AgDrain inputs. We also calculated MeHg loads from AgDrains and the Sacramento and Feather Rivers. Seasonally, MeHg concentrations were higher during November through May than during June through October, but the differences varied by location. Relative to upstream, November through May AgDrain least-squares mean MeHg concentration (0.18 ng L, range 0.15-0.23 ng L) was 2.3-fold higher, while June through October AgDrain mean concentration (0.097 ng L, range 0.6-1.6 ng L) was not significantly different from upstream. June through October AgDrain MeHg loads contributed 10.7 to 14.8% of the total Sacramento River MeHg load. Missing flow data prevented calculation of the percent contribution of AgDrains in November through May. At sites where calculation was possible, November through May loads made up 70 to 90% of the total annual load. Elevated flow and MeHg concentration in November through May both contribute to the majority of the AgDrain MeHg load occurring during this period. Methylmercury reduction efforts should target elevated November through May MeHg concentrations in AgDrains. However, our findings suggest that the contribution and environmental impact of rice is an order of magnitude lower than previous studies in the California Yolo Bypass.


Asunto(s)
Agricultura , Compuestos de Metilmercurio/análisis , Oryza , Contaminantes Químicos del Agua/análisis , California , Monitoreo del Ambiente , Mercurio , Ríos
4.
J Econ Entomol ; 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39001690

RESUMEN

The clover seed weevil, Tychius picirostris Fabricius (Coleoptera: Curculionidae), is a major pest in Oregon white clover seed crops. Reliance on synthetic pyrethroid insecticides and limited availability of diverse modes of action (MoAs) has increased insecticide resistance selection in regional T. picirostris populations, emphasizing the need to evaluate novel chemistries and rotational strategies for effective insecticide resistance management (IRM). The efficacy of 8 foliar insecticide formulations for managing T. picirostris adult and larval life stages was determined in small and large-plot field trials across 2 crop years. In both years, bifenthrin (Brigade 2EC), the grower's standard, showed negligible adult and larval suppression. Insecticide formulations with isocycloseram and cyantraniliprole active ingredients reduced adult and larval populations when applied at BBCH 59-60 (prebloom) and BBCH 65-66 (full bloom) growth stages, respectively. While differences in T. picirostris abundance were observed among insecticide treatments, seed yield differences were not detected in large-plot trials. Larval abundance was correlated with reduced seed yield, and an economic threshold of ≥3 larvae per 30 inflorescences was determined as a conservative larval threshold to justify foliar applications of diamide insecticides. Additional commercial white clover seed fields were surveyed to compare larval scouting techniques, including a standard Berlese funnel and a grower's do-it-yourself funnel. Both larval extraction techniques were correlated and provided similar estimates of larval abundance. These findings demonstrate new MoAs, optimal insecticide application timing, and larval monitoring methods that can be incorporated into an effective T. picirostris IRM program in white clover seed crops.

5.
J Econ Entomol ; 117(2): 609-617, 2024 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-38284646

RESUMEN

The clover seed weevil, Tychius picirostris Fabricius, a serious pest of white clover, Trifolium repens L., grown for seed in western Oregon, causing feeding damage to flowers and developing seeds. Since 2017, white clover seed producers have anecdotally reported T. picirostris control failures using foliar pyrethroid insecticide applications. This mode of action (MoA) is an important chemical control option for T. picirostris management. To evaluate insecticide resistance selection to pyrethroids (bifenthrin) and other MoAs labeled for T. picirostris management (malathion and chlorantraniliprole), adult populations were collected from 8 commercial white clover grown for seed fields in the Willamette Valley, OR, in 2022 and 2023. Among collected Oregon populations, very high resistance ratios (RR50 = 178.00-725.67) were observed to technical grade bifenthrin and low to high resistance ratios (RR50 = 7.80-32.80) to malathion in surface contact assays compared to a susceptible Canadian field population. Moreover, >2.73 times the labeled rate of formulated product containing bifenthrin as the sole MoA was required to kill >50% of T. picirostris in topical assays. Synergistic assays with a mixed-function oxidase inhibitor, an esterase inhibitor, and a glutathione-S-transferase inhibitor revealed phase I and II detoxification enzymes are present in Oregon T. picirostris populations and confer metabolic resistance to bifenthrin. This is the first report of T. picirostris insecticide resistance selection to pyrethroid and organophosphate insecticides. Results will inform continued monitoring and insecticide resistance management strategies to slow the evolution of T. picirostris insecticide resistance selection in Oregon's white clover seed production.


Asunto(s)
Escarabajos , Insecticidas , Piretrinas , Trifolium , Gorgojos , Animales , Malatión , Oregon , Canadá , Piretrinas/farmacología , Insecticidas/farmacología , Resistencia a los Insecticidas , Productos Agrícolas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA