RESUMEN
A 60-d feeding trial was conducted to explore the potential regulatory effects of dietary Clostridium butyricum cultures (CBC) supplementation in high-carbohydrate diet (HCD) on carbohydrate utilisation, antioxidant capacity and intestinal microbiota of largemouth bass. Triplicate groups of largemouth bass (average weight 35·03 ± 0·04 g), with a destiny of twenty-eight individuals per tank, were fed low-carbohydrate diet and HCD supplemented with different concentration of CBC (0 %, 0·25 %, 0·50 % and 1·00 %). The results showed that dietary CBC inclusion alleviated the hepatic glycogen accumulation induced by HCD intake. Additionally, the expression of hepatic ampkα1 and insulin signaling pathway-related genes (ira, irb, irs, p13kr1 and akt1) increased linearly with dietary CBC inclusion, which might be associated with the activation of glycolysis-related genes (gk, pfkl and pk). Meanwhile, the expression of intestinal SCFA transport-related genes (ffar3 and mct1) was significantly increased with dietary CBC inclusion. In addition, the hepatic antioxidant capacity was improved with dietary CBC supplementation, as evidenced by linear decrease in malondialdehyde concentration and expression of keap1, and linear increase in antioxidant enzyme activities (total antioxidative capacity, total superoxide dismutase and catalase) and expression of antioxidant enzyme-related genes (nrf2, sod1, sod2 and cat). The analysis of bacterial 16S rRNA V3-4 region indicated that dietary CBC inclusion significantly reduced the enrichment of Firmicutes and potential pathogenic bacteria genus Mycoplasma but significantly elevated the relative abundance of Fusobacteria and Cetobacterium. In summary, dietary CBC inclusion improved carbohydrate utilization, antioxidant capacity and intestinal microbiota of largemouth bass fed HCD.
Asunto(s)
Lubina , Clostridium butyricum , Humanos , Animales , Antioxidantes/metabolismo , Lubina/metabolismo , Clostridium butyricum/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , ARN Ribosómico 16S/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Dieta/veterinaria , CarbohidratosRESUMEN
An 8-week feeding trial was conducted to evaluate the effects of dietary supplementation of compound probiotic cultures (CPC; Bacillus subtilis, Lactobacillus plantarum and Saccharomyces cerevisiae) on the growth performance, antioxidant capacity, non-specific immunity and disease resistance of juvenile largemouth bass. Triplicate groups of largemouth bass (average weight 42.05 ± 0.02 g), with a destiny of 30 individuals per tank, were fed diets supplemented with different concentration of compound probiotic cultures (CPC) (0%, CPC (0.0); 0.5%, CPC (0.5); 1.0%, CPC (1.0); 2.0%, CPC (2.0)). After the feeding trial, tissue samples of largemouth bass were collected and the challenge test with Aeromonas hydrophila was performed. Results indicated that the CPC supplementation produced no significant difference on the growth performance, feed utilization and body composition of largemouth bass, while significantly increased the cumulative survival rate in the Aeromonas hydrophila challenge test. Meanwhile, the inclusion of CPC elevated the hepatic antioxidant capacity, and the highest activity of antioxidant enzymes, including T-AOC, CAT, GPx and T-SOD, was observed in the CPC (2.0) group. Meanwhile, the transcription of Nrf2/keap1 and antioxidant related genes, including CAT, GPx, GST, SOD1 and SOD2, was significantly elevated with the inclusion of CPC. In addition, the inclusion of CPC improved the non-specific immunity of largemouth bass. The activity of serum lysozyme was significantly elevated in the CPC (2.0) group, while the transcription of RelA and pro-inflammatory factors, including TNF-α and IL-1ß, was inhibited with the inclusion of CPC. Meanwhile, related genes potentially linked to RelA, including TLR2 and p38 MAPK, were detected that their relative expression was significantly inhibited with the inclusion of CPC. The current findings indicated that the inclusion of 2% CPC improved the antioxidant capacity, non-specific immunity and disease resistance of juvenile largemouth bass, and suggested that 2% CPC as a functional additive could be applied to the diet of juvenile largemouth bass in aquaculture practice.