Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Genes Dev ; 34(21-22): 1452-1473, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-33060135

RESUMEN

CDK7 associates with the 10-subunit TFIIH complex and regulates transcription by phosphorylating the C-terminal domain (CTD) of RNA polymerase II (RNAPII). Few additional CDK7 substrates are known. Here, using the covalent inhibitor SY-351 and quantitative phosphoproteomics, we identified CDK7 kinase substrates in human cells. Among hundreds of high-confidence targets, the vast majority are unique to CDK7 (i.e., distinct from other transcription-associated kinases), with a subset that suggest novel cellular functions. Transcription-associated factors were predominant CDK7 substrates, including SF3B1, U2AF2, and other splicing components. Accordingly, widespread and diverse splicing defects, such as alternative exon inclusion and intron retention, were characterized in CDK7-inhibited cells. Combined with biochemical assays, we establish that CDK7 directly activates other transcription-associated kinases CDK9, CDK12, and CDK13, invoking a "master regulator" role in transcription. We further demonstrate that TFIIH restricts CDK7 kinase function to the RNAPII CTD, whereas other substrates (e.g., SPT5 and SF3B1) are phosphorylated by the three-subunit CDK-activating kinase (CAK; CCNH, MAT1, and CDK7). These results suggest new models for CDK7 function in transcription and implicate CAK dissociation from TFIIH as essential for kinase activation. This straightforward regulatory strategy ensures CDK7 activation is spatially and temporally linked to transcription, and may apply toward other transcription-associated kinases.


Asunto(s)
Quinasas Ciclina-Dependientes/metabolismo , Modelos Biológicos , Factor de Transcripción TFIIH/metabolismo , Transcripción Genética/genética , Empalme Alternativo/genética , Supervivencia Celular/efectos de los fármacos , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Quinasas Ciclina-Dependientes/genética , Activación Enzimática/genética , Células HL-60 , Humanos , Quinasa Activadora de Quinasas Ciclina-Dependientes
2.
Antimicrob Agents Chemother ; 58(12): 7430-40, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25267679

RESUMEN

Helicobacter pylori is motile by means of polar flagella, and this motility has been shown to play a critical role in pathogenicity. The major structural flagellin proteins have been shown to be glycosylated with the nonulosonate sugar, pseudaminic acid (Pse). This glycan is unique to microorganisms, and the process of flagellin glycosylation is required for H. pylori flagellar assembly and consequent motility. As such, the Pse biosynthetic pathway offers considerable potential as an antivirulence drug target, especially since motility is required for H. pylori colonization and persistence in the host. This report describes screening the five Pse biosynthetic enzymes for small-molecule inhibitors using both high-throughput screening (HTS) and in silico (virtual screening [VS]) approaches. Using a 100,000-compound library, 1,773 hits that exhibited a 40% threshold inhibition at a 10 µM concentration were identified by HTS. In addition, VS efforts using a 1.6-million compound library directed at two pathway enzymes identified 80 hits, 4 of which exhibited reasonable inhibition at a 10 µM concentration in vitro. Further secondary screening which identified 320 unique molecular structures or validated hits was performed. Following kinetic studies and structure-activity relationship (SAR) analysis of selected inhibitors from our refined list of 320 compounds, we demonstrated that three inhibitors with 50% inhibitory concentrations (IC50s) of approximately 14 µM, which belonged to a distinct chemical cluster, were able to penetrate the Gram-negative cell membrane and prevent formation of flagella.


Asunto(s)
Antibacterianos/farmacología , Flagelos/efectos de los fármacos , Flagelina/antagonistas & inhibidores , Helicobacter pylori/efectos de los fármacos , Helicobacter pylori/patogenicidad , Bibliotecas de Moléculas Pequeñas/farmacología , Azúcares Ácidos/metabolismo , Antibacterianos/química , Transporte Biológico , Membrana Celular/efectos de los fármacos , Permeabilidad de la Membrana Celular , Descubrimiento de Drogas , Flagelos/genética , Flagelos/metabolismo , Flagelina/biosíntesis , Flagelina/genética , Expresión Génica , Glicosilación/efectos de los fármacos , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Ensayos Analíticos de Alto Rendimiento , Simulación del Acoplamiento Molecular , Movimiento/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-Actividad , Interfaz Usuario-Computador , Virulencia
3.
J Struct Biol ; 184(2): 147-54, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24055609

RESUMEN

The phenylacetate degradation pathway is present in a wide range of microbes. A key component of this pathway is the four-subunit phenylacetyl-coenzyme A monooxygenase complex (PA-CoA MO, PaaACBE) that catalyzes the insertion of an oxygen in the aromatic ring of PA. This multicomponent enzyme represents a new family of monooxygenases. We have previously determined the structure of the PaaAC subcomplex of catalytic (A) and structural (C) subunits and shown that PaaACB form a stable complex. The PaaB subunit is unrelated to the small subunits of homologous monooxygenases and its role and organization of the PaaACB complex is unknown. From low-resolution crystal structure, electron microscopy and small angle X-ray scattering we show that the PaaACB complex forms heterohexamers, with a homodimer of PaaB bridging two PaaAC heterodimers. Modeling the interactions of reductase subunit PaaE with PaaACB suggested that a unique and conserved 'lysine bridge' constellation near the Fe-binding site in the PaaA subunit (Lys68, Glu49, Glu72 and Asp126) may form part of the electron transfer path from PaaE to the iron center. The crystal structure of the PaaA(K68Q/E49Q)-PaaC is very similar to the wild-type enzyme structure, but when combined with the PaaE subunit the mutant showed 20-50 times reduced activity, supporting the functional importance of the 'lysine bridge'.


Asunto(s)
Proteínas Bacterianas/química , Klebsiella pneumoniae/enzimología , Oxigenasas de Función Mixta/química , Sustitución de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/ultraestructura , Microscopía por Crioelectrón , Cristalografía por Rayos X , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/ultraestructura , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Tioléster Hidrolasas
4.
Int Immunopharmacol ; 117: 109933, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37012861

RESUMEN

BACKGROUND: G protein-coupled receptor kinases 6 (GRK6) is one kinase of GPCRs, previous studies have shown that GRK6 is involved in the regulation of inflammatory processes. However, the role of GRK6 in inflammation is not well understood and what is the effect of its palmitoylation modification on inflammatory response in macrophage are still largely unknown. METHODS: LPS stimulated Kupffer cells to simulate inflammatory injury model. SiGRK6 and GRK6 lentiviral plasmids were used to alter cellular GRK6 levels. Subcellular localization of GRK6 was detected using Membrane and Cytoplasmic Protein Extraction Kit and immunofluorescence. Palmitoylated Protein Assay Kit (Red) and modified Acyl-RAC method were used to detect palmitoylation levels. RESULTS: GRK6 mRNA and protein expression decreased in LPS-induced inflammatory response in Kupffer cells (P < 0.05). Overexpression of GRK6 promoted inflammatory response, while silencing GRK6 reduced inflammatory response (P < 0.05). In terms of molecular mechanisms, LPS induced increased palmitoylation of GRK6 and promoted the translocation of GRK6 to cell membranes (P < 0.05). Subsequently, GRK6 functioned through the PI3K/ AKT signaling pathway (P < 0.05). Inhibition of palmitoylation level of GRK6 can inhibit its membrane translocation and reduce inflammatory response (P < 0.05). CONCLUSION: Inhibition of palmitoylation level of GRK6 might relieve LPS-induced inflammation in Kupffer cells by blocking GRK6 membrane translocation and subsequent inflammatory signaling pathway, providing a theoretical basis for targeting GRK6 to regulate inflammation.


Asunto(s)
Lipopolisacáridos , Fosfatidilinositol 3-Quinasas , Humanos , Fosfatidilinositol 3-Quinasas/metabolismo , Lipopolisacáridos/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Lipoilación , Inflamación/metabolismo
5.
Front Public Health ; 11: 1194375, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37766745

RESUMEN

Objective: This paper examines the impact of healthcare industry convergence on the performance of the public health system in the eastern, central, and western regions of China. Methods: Public health performance was measured by a composite index of three standards: average life expectancy at birth, perinatal mortality, and maternal mortality. The healthcare industry convergence was measured using a coupling coordination degree method. The spatial lag, spatial error, and spatial Durbin models were used to estimate the effect of healthcare industry convergence on public health system performance and this effect's spatial dependence and heterogeneity across eastern, central, and western China using panel data from 30 Chinese provinces from 2002 to 2019. Results: The convergence of the healthcare industry significantly promotes regional public health [ß =0.576, 95% CI: (0.331,0.821)]. However, the convergence does not have a spatial spillover effect on the public health system at the national level. Additionally, analysis of regional heterogeneity shows that the direct effects of healthcare industry convergence on public health are positive and statistically significant for Eastern China, statistically insignificant for Central China, and positive and statistically significant for Western China. The indirect effects are negative, statistically significant, positive, statistically significant, and statistically insignificant for these three regions, respectively. Conclusion: Policy efforts should strengthen the convergence between the healthcare industry and relevant industries. It can produce more current healthcare services to improve public health and reduce regional health inequality.

6.
J Biol Chem ; 286(12): 10735-43, 2011 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-21247899

RESUMEN

The utilization of phenylacetic acid (PA) in Escherichia coli occurs through a hybrid pathway that shows features of both aerobic and anaerobic metabolism. Oxygenation of the aromatic ring is performed by a multisubunit phenylacetyl-coenzyme A oxygenase complex that shares remote homology of two subunits to well studied bacterial multicomponent monooxygenases and was postulated to form a new bacterial multicomponent monooxygenase subfamily. We expressed the subunits PaaA, B, C, D, and E of the PA-CoA oxygenase and showed that PaaABC, PaaAC, and PaaBC form stable subcomplexes that can be purified. In vitro reconstitution of the oxygenase subunits showed that each of the PaaA, B, C, and E subunits are necessary for catalysis, whereas PaaD is not essential. We have determined the crystal structure of the PaaAC complex in a ligand-free form and with several CoA derivatives. We conclude that PaaAC forms a catalytic core with a monooxygenase fold with PaaA being the catalytic α subunit and PaaC, the structural ß subunit. PaaAC forms heterotetramers that are organized very differently from other known multisubunit monooxygenases and lacks their conservative network of hydrogen bonds between the di-iron center and protein surface, suggesting different association with the reductase and different mechanisms of electron transport. The PaaA structure shows adaptation of the common access route to the active site for binding a CoA-bound substrate. The enzyme-substrate complex shows the orientation of the aromatic ring, which is poised for oxygenation at the ortho-position, in accordance with the expected chemistry. The PA-CoA oxygenase complex serves as a paradigm for the new subfamily multicomponent monooxygenases comprising several hundred homologs.


Asunto(s)
Escherichia coli K12/enzimología , Proteínas de Escherichia coli/química , Oxigenasas de Función Mixta/química , Complejos Multiproteicos/química , Subunidades de Proteína/química , Cristalografía por Rayos X , Oxidación-Reducción , Estructura Cuaternaria de Proteína , Especificidad por Sustrato
7.
Biochemistry ; 50(21): 4775-85, 2011 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-21542621

RESUMEN

The ubiquitin-specific protease (USP) structural class represents the largest and most diverse family of deubiquitinating enzymes (DUBs). Many USPs assume important biological roles and emerge as potential targets for therapeutic intervention. A clear understanding of USP catalytic mechanism requires a functional evaluation of the proposed key active site residues. Crystallographic data of ubiquitin aldehyde adducts of USP catalytic cores provided structural details on the catalytic triad residues, namely the conserved Cys and His, and a variable putative third residue, and inferred indirect structural roles for two other conserved residues (Asn and Asp), in stabilizing via a bridging water molecule the oxyanion of the tetrahedral intermediate (TI). We have expressed the catalytic domain of USP2 and probed by site-directed mutagenesis the role of these active site residues in the hydrolysis of peptide and isopeptide substrates, including a synthetic K48-linked diubiquitin substrate for which a label-free, mass spectrometry based assay has been developed to monitor cleavage. Hydrolysis of ubiquitin-AMC, a model substrate, was not affected by the mutations. Molecular dynamics simulations of USP2, free and complexed with the TI of a bona fide isopeptide substrate, were carried out. We found that Asn271 is structurally poised to directly stabilize the oxyanion developed in the acylation step, while being structurally supported by the adjacent absolutely conserved Asp575. Mutagenesis data functionally confirmed this structural role independent of the nature (isopeptide vs peptide) of the bond being cleaved. We also found that Asn574, structurally located as the third member of the catalytic triad, does not fulfill this role functionally. A dual supporting role is inferred from double-point mutation and structural data for the absolutely conserved residue Asp575, in oxyanion hole formation, and in maintaining the correct alignment and protonation of His557 for catalytic competency.


Asunto(s)
Endopeptidasas/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Biocatálisis , Dominio Catalítico , Cartilla de ADN , Endopeptidasas/química , Endopeptidasas/genética , Hidrólisis , Espectrometría de Masas , Datos de Secuencia Molecular , Mutagénesis , Homología de Secuencia de Aminoácido , Ubiquitina Tiolesterasa , Proteasas Ubiquitina-Específicas
8.
Artículo en Inglés | MEDLINE | ID: mdl-33984631

RESUMEN

The demand for analysis of carotenoids (CAR) and fat-soluble vitamins (FSV) is continuously expanding, but currently used sample preparation methods either require complicated extraction procedure or large sample volume, let alone the reliability of the results. This study aimed to develop a fast, high-efficient, and high-throughput method based on supported liquid extraction (SLE) for the simultaneous extraction of FSV and CAR from human serum before using high-performance liquid chromatography-diode array detector (HPLC-DAD) analysis. The optimization of SLE parameters was achieved through response surface methodology (RSM) based on the Box-Behnken design (BBD) and included serum-water-extraction solvent ratio and eluent volume. Under optimal conditions, the proposed method gives acceptable limits of detection (LOD) (0.005-0.3 µg/mL), good recovery (89.6-110.9%) as well as relative standard deviation (RSD) of less than 10.1% by consuming lower serum sample (100 µL) and less sample preparation time (2 min per sample). Compared with liquid-phase extraction (LLE), the SLE delivers rapid extraction with higher recovery, better reproducibility, and lower matrix effect for CAR and FSV analysis. The method has been successfully applied to quantify CAR and FSV levels in serum of healthy individuals and age-related macular degeneration (AMD) patients, demonstrating the feasibility of the proposed method for epidemiology and routine applications.

9.
Taiwan J Obstet Gynecol ; 60(3): 480-486, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33966732

RESUMEN

OBJECTIVE: Calcium-activated chloride channel 2 (CLCA2) is closely related to the invasion, metastasis, and prognosis of some common malignant tumors. The present study aimed to evaluate the role of CLCA2 in cervical squamous cell carcinoma (CESC) using bioinformatics analysis. MATERIALS AND METHODS: The mRNA sequencing data and the corresponding clinical data were obtained from Gene Expression Omnibus (GEO) database and The Cancer Genome Atlas (TCGA) database respectively. Then univariate analysis of variance was used to analyze the differential mRNA expression of CLCA2 between normal, cervical Intraepithelial neoplasia (CIN), and CESC tissues and clinicopathological characteristics. The Gene Expression Profiling Interactive Analysis (GEPIA) was used to assess the association between CLCA2 and Disease-Free Survival (DFS), overall survival (OS). The Gene Set Enrichment Analysis (GSEA) was used to explore the associated signaling pathways. The Tumor Immune Estimation Resource (TIMER) was used to predict the potential biological roles of CLCA2 in tumor-immune of CESC. RESULTS: CLCA2 expression was significantly decreased in CESC tissues compared with normal and CIN tissues (P < 0.05). Meanwhile, obese patients had lower levels of CLCA2 expression than normal-weight CESC patients (P < 0.05). However, there was no significant difference in the expression level of CLCA2 in patients with different T stage, lymph node status, metastasis, and FIGO stage in CC(P > 0.05). The survival analysis indicated that for DFS, CESC with high CLCA2 expression was associated with better prognoses compared with those with low expression levels (P < 0.05). But for the OS, there was no difference. GSEA revealed that 4 pathways exhibited significant differential enrichment in the CLCA2 high-expression phenotype, including the P53 signaling pathway, the ERBB signaling pathway, the NOTCH signaling pathway, and the ubiquitin-mediated proteolysis. The TIMER reveals the expression of CLCA2 showed a significant inverse association with the number of B cells, Macrophage cells, and Dendritic Cell infiltration. CONCLUSION: The present study indicates that CLCA2 expression may be a potential prognostic marker for patients with CESC.


Asunto(s)
Carcinoma de Células Escamosas/genética , Canales de Cloruro/metabolismo , Regulación Neoplásica de la Expresión Génica/genética , Transducción de Señal/genética , Neoplasias del Cuello Uterino/genética , Adulto , Biomarcadores de Tumor/genética , Carcinoma de Células Escamosas/mortalidad , Cuello del Útero/metabolismo , Biología Computacional , Bases de Datos Genéticas , Femenino , Perfilación de la Expresión Génica , Humanos , Persona de Mediana Edad , Pronóstico , ARN Mensajero/genética , Análisis de Secuencia de ARN , Análisis de Supervivencia , Neoplasias del Cuello Uterino/mortalidad
10.
Biochemistry ; 43(13): 4028-38, 2004 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-15049710

RESUMEN

Recombinant human brain calbindin D(28K) (rHCaBP), human Cu,Zn-superoxide dismutase (HCuZnSOD), rabbit muscle glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and bovine serum albumin (BSA) were found to be S-glutathiolated in decomposed S-nitrosoglutathione (GSNO) solutions. Tryptic or Glu-C digestion and MALDI-TOF MS analyses of the digests are consistent with S-thiolation of Cys111 and Cys187 of HCuZnSOD and rHCaBP, respectively, upon exposure to decomposed GSNO. GAPDH activity analysis reveals that S-glutathiolation most likely occurs on the active site Cys149, and the single free Cys34 is assumed to be the site of S-glutathiolation in BSA. The yields of S-glutathiolation of rHCaBP, GAPDH, and BSA were much higher than those of HCuZnSOD. The latter is limited by the accessibility of Cys111 to the glutathiolating reagent in the HCuZnSOD dimer. Unlike decomposed GSNO, fresh GSNO, reduced glutathione (GSH), and oxidized glutathione (GSSG) are not efficient S-glutathiolating agents for the proteins examined here. On the basis of analysis by mass spectrometry and UV-visible absorption, GSNO decomposition in the dark at room temperature yields glutathione disulfide S-oxide [GS(O)SG], glutathione disulfide S-dioxide (GSO(2)SG), and GSSG as products. GS(O)SG is the efficient protein S-glutathiolating agent in GSNO solutions, not GSNO, which does not carry out efficient S-glutathiolation of rHCaBP, HCuZnSOD, or GAPDH in vitro. A hydrolysis pathway yielding GSOH and nitroxyl (HNO/NO(-)) as intermediates is proposed for GSNO decomposition in the dark. This is based on inhibition of GSNO breakdown by dimedone, a reagent specific for sulfenic acids, and on nitroxyl scavenging by metmyoglobin. The results presented here are contrary to numerous reports of protein S-thiolation by low-molecular weight S-nitrosothiols.


Asunto(s)
Disulfuro de Glutatión/análogos & derivados , Disulfuro de Glutatión/química , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , S-Nitrosoglutatión/química , Proteína G de Unión al Calcio S100/metabolismo , Albúmina Sérica Bovina/metabolismo , Superóxido Dismutasa/metabolismo , Secuencia de Aminoácidos , Animales , Encéfalo/metabolismo , Calbindinas , Bovinos , Cisteína/metabolismo , Glutatión/metabolismo , Humanos , Datos de Secuencia Molecular , Proteínas Musculares/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Fragmentos de Péptidos/metabolismo , Conejos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , S-Nitrosoglutatión/metabolismo , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
11.
Biochemistry ; 42(11): 3326-34, 2003 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-12641465

RESUMEN

Mass spectrometry and UV-vis absorption results support a mechanism for NO donation by S-nitrosoglutathione (GSNO) to recombinant human brain calbindin D(28K) (rHCaBP) that requires the presence of trace copper, added as either Cu,Zn-superoxide dismutase (CuZnSOD) or CuSO(4). The extent of copper-catalyzed rHCaBP S-nitrosation depends on the ratio of protein to GSNO and on the reaction time, and NO-transfer is prevented when copper chelators are present. CuZnSOD is an efficient catalyst of rHCaBP S-nitrosation, and the mechanism of CuZnSOD-catalyzed S-nitrosation involves reduction of the active-site Cu(II) by a number of the five free thiols in rHCaBP, giving rise to thiyl radicals. The Cu(I)ZnSOD formed catalyzes the reductive cleavage of GSNO present in solution to give GSH and release NO. rHCaBP thiyl radicals react with NO to yield the S-nitrosoprotein. Cu(II)ZnSOD is also reduced by GSH in a concentration-dependent manner up to 5 mM but not at higher GSH concentrations. However, unlike the rHCaBP thiyl radicals, GS(*) radicals dimerize to GSSG faster than their reaction with NO. The data presented here provide a biologically relevant mechanism for protein S-nitrosation by small S-nitrosothiols. S-nitrosation is rapidly gaining recognition as a major form of protein posttranslational modification, and the efficient S-nitrosation of CaBP by CuZnSOD/GSNO is speculated to be of neurochemical importance given that CaBP and CuZnSOD are abundant in neurons.


Asunto(s)
Encéfalo/metabolismo , S-Nitrosoglutatión/metabolismo , Proteína G de Unión al Calcio S100/metabolismo , Encéfalo/enzimología , Calbindina 1 , Calbindinas , Humanos , Proteínas Recombinantes/metabolismo , Espectrometría de Masa por Ionización de Electrospray , Superóxido Dismutasa/metabolismo
12.
Biochemistry ; 41(19): 6185-92, 2002 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-11994015

RESUMEN

Calbindin D(28K) is noted for its abundance and specific distribution in mammalian brain and sensory neurons. It can bind three to five Ca(2+) ions and may act as a Ca(2+) buffer to maintain intracellular Ca(2+) homeostasis, but its exact role is still unknown. In the present study, mass spectrometric analysis reveals that the five cysteine residues in recombinant human brain calbindin D(28K) (rHCaBP) are derivatized with N-ethylmaleimide, consistent with the determination of 5.3 +/- 0.4 and 4.7 +/- 0.4 free thiols in the protein using the thiol-specific reagents 5,5'-dithiobis(2-nitrobenzoic acid) and 5-(octyldithio)-2-nitrobenzoic acid, respectively. The results of UV-vis and circular dichroism absorption, intrinsic fluorescence, and mass spectrometry measurements indicate that both Ca(2+)-loaded (holo) and Ca(2+)-free (apo) rHCaBP are S-nitrosated by S-nitrosocysteine (CysNO). The number of cysteine residues S-nitrosated in holorHCaBP and aporHCaBP are 2.6 +/- 0.05 and 3.4 +/- 0.09, respectively, as determined by the Saville assay. HolorHCaBP also undergoes S-nitrosation at one to three cysteine residues when exposed to S-nitrosoglutathione (GSNO), and Cys100 was found to be an S-nitrosation site by peptide mass mapping. Treatment of holorHCaBP with free NO resulted in a mass increase of 59 +/- 2 Da, corresponding to two NO adducts. Since up to four cysteine residues can be S-nitrosated in rHCaBP, it is proposed that the protein may act as a NO buffer or reservoir in the brain in a manner similar to serum albumin in blood. It is significant in this context that rHCaBP is found coexistent with nitric oxide synthase in cerebellum and that S-nitrosation varies with Ca(2+) binding, with S-nitrosation occurring to a greater extent in aporHCaBP than in the holoprotein. Furthermore, exposure of rHCaBP to either CysNO or GSNO also leads to rapid S-thiolation of Cys187. We demonstrate here for the first time that intrinsic protein fluorescence is a sensitive probe of protein S-nitrosation. This is due to efficient Förster energy transfer (R(0) approximately 17 A) between tryptophan donors and S-nitrosothiol acceptors.


Asunto(s)
Encéfalo/metabolismo , Calcio/metabolismo , Proteína G de Unión al Calcio S100/química , Proteína G de Unión al Calcio S100/metabolismo , Sitios de Unión , Calbindinas , Cisteína/química , Etilmaleimida , Humanos , Técnicas In Vitro , Óxido Nítrico/metabolismo , Donantes de Óxido Nítrico , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , S-Nitrosoglutatión , Espectrometría de Fluorescencia , Espectrometría de Masa por Ionización de Electrospray , Reactivos de Sulfhidrilo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA