Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 419
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nucleic Acids Res ; 52(1): 4-21, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-37993417

RESUMEN

Several cancer core regulatory circuitries (CRCs) depend on the sustained generation of DNA accessibility by SWI/SNF chromatin remodelers. However, the window when SWI/SNF is acutely essential in these settings has not been identified. Here we used neuroblastoma (NB) cells to model and dissect the relationship between cell-cycle progression and SWI/SNF ATPase activity. We find that SWI/SNF inactivation impairs coordinated occupancy of non-pioneer CRC members at enhancers within 1 hour, rapidly breaking their autoregulation. By precisely timing inhibitor treatment following synchronization, we show that SWI/SNF is dispensable for survival in S and G2/M, but becomes acutely essential only during G1 phase. We furthermore developed a new approach to analyze the oscillating patterns of genome-wide DNA accessibility across the cell cycle, which revealed that SWI/SNF-dependent CRC binding sites are enriched at enhancers with peak accessibility during G1 phase, where they activate genes involved in cell-cycle progression. SWI/SNF inhibition strongly impairs G1-S transition and potentiates the ability of retinoids used clinically to induce cell-cycle exit. Similar cell-cycle effects in diverse SWI/SNF-addicted settings highlight G1-S transition as a common cause of SWI/SNF dependency. Our results illustrate that deeper knowledge of the temporal patterns of enhancer-related dependencies may aid the rational targeting of addicted cancers.


Cancer cells driven by runaway transcription factor networks frequently depend on the cellular machinery that promotes DNA accessibility. For this reason, recently developed small molecules that impair SWI/SNF (or BAF) chromatin remodeling activity have been under active evaluation as anti-cancer agents. However, exactly when SWI/SNF activity is essential in dependent cancers has remained unknown. By combining live-cell imaging and genome-wide profiling in neuroblastoma cells, Cermakova et al. discover that SWI/SNF activity is needed for survival only during G1 phase of the cell cycle. The authors reveal that in several cancer settings, dependency on SWI/SNF arises from the need to reactivate factors involved in G1-S transition. Because of this role, authors find that SWI/SNF inhibition potentiates cell-cycle exit by retinoic acid.


Asunto(s)
Fase G1 , Neoplasias , Factores de Transcripción , Humanos , Ciclo Celular , Cromatina/genética , Ensamble y Desensamble de Cromatina , ADN , Secuencias Reguladoras de Ácidos Nucleicos , Factores de Transcripción/metabolismo , Elementos de Facilitación Genéticos
2.
Circulation ; 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38686562

RESUMEN

BACKGROUND: Myocardial mitochondrial dysfunction underpins the pathogenesis of heart failure (HF), yet therapeutic options to restore myocardial mitochondrial function are scarce. Epigenetic modifications of mitochondrial DNA (mtDNA), such as methylation, play a pivotal role in modulating mitochondrial homeostasis. However, their involvement in HF remains unclear. METHODS: Experimental HF models were established through continuous angiotensin II and phenylephrine (AngII/PE) infusion or prolonged myocardial ischemia/reperfusion injury. The landscape of N6-methyladenine (6mA) methylation within failing cardiomyocyte mtDNA was characterized using high-resolution mass spectrometry and methylated DNA immunoprecipitation sequencing. A tamoxifen-inducible cardiomyocyte-specific Mettl4 knockout mouse model and adeno-associated virus vectors designed for cardiomyocyte-targeted manipulation of METTL4 (methyltransferase-like protein 4) expression were used to ascertain the role of mtDNA 6mA and its methyltransferase METTL4 in HF. RESULTS: METTL4 was predominantly localized within adult cardiomyocyte mitochondria. 6mA modifications were significantly more abundant in mtDNA than in nuclear DNA. Postnatal cardiomyocyte maturation presented with a reduction in 6mA levels within mtDNA, coinciding with a decrease in METTL4 expression. However, an increase in both mtDNA 6mA level and METTL4 expression was observed in failing adult cardiomyocytes, suggesting a shift toward a neonatal-like state. METTL4 preferentially targeted mtDNA promoter regions, which resulted in interference with transcription initiation complex assembly, mtDNA transcriptional stalling, and ultimately mitochondrial dysfunction. Amplifying cardiomyocyte mtDNA 6mA through METTL4 overexpression led to spontaneous mitochondrial dysfunction and HF phenotypes. The transcription factor p53 was identified as a direct regulator of METTL4 transcription in response to HF-provoking stress, thereby revealing a stress-responsive mechanism that controls METTL4 expression and mtDNA 6mA. Cardiomyocyte-specific deletion of the Mettl4 gene eliminated mtDNA 6mA excess, preserved mitochondrial function, and mitigated the development of HF upon continuous infusion of AngII/PE. In addition, specific silencing of METTL4 in cardiomyocytes restored mitochondrial function and offered therapeutic relief in mice with preexisting HF, irrespective of whether the condition was induced by AngII/PE infusion or myocardial ischemia/reperfusion injury. CONCLUSIONS: Our findings identify a pivotal role of cardiomyocyte mtDNA 6mA and the corresponding methyltransferase, METTL4, in the pathogenesis of mitochondrial dysfunction and HF. Targeted suppression of METTL4 to rectify mtDNA 6mA excess emerges as a promising strategy for developing mitochondria-focused HF interventions.

3.
J Mol Cell Cardiol ; 188: 1-14, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38246086

RESUMEN

Stem cells represent an attractive resource for cardiac regeneration. However, the survival and function of transplanted stem cells is poor and remains a major challenge for the development of effective therapies. As two main cell types currently under investigation in heart repair, mesenchymal stromal cells (MSCs) indirectly support endogenous regenerative capacities after transplantation, while induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) functionally integrate into the damaged myocardium and directly contribute to the restoration of its pump function. These two cell types are exposed to a common microenvironment with many stressors in ischemic heart tissue. This review summarizes the research progress on the mechanisms and challenges of MSCs and iPSC-CMs in post-MI heart repair, introduces several randomized clinical trials with 3D-mapping-guided cell therapy, and outlines recent findings related to the factors that affect the survival and function of stem cells. We also discuss the future directions for optimization such as biomaterial utilization, cell combinations, and intravenous injection of engineered nucleus-free MSCs.


Asunto(s)
Procedimientos Quirúrgicos Cardíacos , Células Madre Pluripotentes Inducidas , Infarto del Miocardio , Humanos , Infarto del Miocardio/terapia , Trasplante de Células Madre , Miocitos Cardíacos
4.
Arch Biochem Biophys ; 757: 110013, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38670301

RESUMEN

(1) BACKGROUND: Hashimoto's thyroiditis (HT) can cause angiogenesis in the thyroid gland. However, the molecular mechanism of endothelial cells and angiogenesis related genes (ARGs) has not been extensively studied in HT. (2) METHODS: The HRA001684, GSE29315 and GSE163203 datasets were included in this study. Using single-cell analysis, weighted gene co-expression network analysis (WGCNA), functional enrichment analysis, machine learning algorithms and expression analysis for exploration. And receiver operator characteristic (ROC) curves was draw. Gene set enrichment analysis (GSEA) was utilized to investigate the biological function of the biomarkers. Meanwhile, we investigated into the relationship between biomarkers and different types of immune cells. Additionally, the expression of biomarkers in the TCGA-TC dataset was examined and the mRNA-drug interaction network was constructed. (3) RESULTS: We found 14 cell subtypes were obtained in HT samples after single-cell analysis. A total of 5 biomarkers (CD52, CD74, CD79A, HLA-B and RGS1) were derived, and they had excellent diagnostic performance. Then, 27 drugs targeting biomarkers were predicted. The expression analysis showed that CD74 and HLA-B were significantly up-regulated in HT samples. (4) CONCLUSION: In this study, 5 biomarkers (CD52, CD74, CD79A, HLA-B and RGS1) were screened and their expressions in endothelial cells was compared to offer a new reference for the recognition and management of HT.


Asunto(s)
Células Endoteliales , Enfermedad de Hashimoto , Neovascularización Patológica , Análisis de la Célula Individual , Transcriptoma , Humanos , Enfermedad de Hashimoto/genética , Enfermedad de Hashimoto/diagnóstico , Análisis de la Célula Individual/métodos , Células Endoteliales/metabolismo , Neovascularización Patológica/genética , Biomarcadores/metabolismo , Perfilación de la Expresión Génica , Análisis de Secuencia de ARN/métodos , Angiogénesis
5.
Artículo en Inglés | MEDLINE | ID: mdl-38841867

RESUMEN

OBJECTIVES: The clinical efficacy and safety of a novel left atrial appendage (LAA) occluder of the SeaLA closure system in patients with nonvalvular atrial fibrillation (NVAF) were reported. BACKGROUND: Patients with NVAF are at a higher risk of stroke compared to healthy individuals. Left atrial appendage closure (LAAC) has emerged as a prominent strategy for reducing the risk of thrombosis in individuals with NVAF. METHODS: A prospective, multicenter study was conducted in NVAF patients with a high risk of stroke. RESULTS: The LAAC was successfully performed in 163 patients. The mean age was 66.93 ± 7.92 years, with a mean preoperative CHA2DS2-VASc score of 4.17 ± 1.48. One patient with residual flow >3 mm was observed at the 6-month follow-up, confirmed by TEE. During the follow-up, 2 severe pericardiac effusions were noted, and 2 ischemic strokes were observed. Four device-related thromboses were resolved after anticoagulation treatment. There was no device embolism. CONCLUSIONS: The LAAC with the SeaLA device demonstrates encouraging feasibility, safety, and efficacy outcomes.

6.
Circ Res ; 130(10): 1490-1506, 2022 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-35387487

RESUMEN

RATIONALE: Long-term exercise provides reliable cardioprotection via mechanisms still incompletely understood. Although traditionally considered a thermogenic tissue, brown adipose tissue (BAT) communicates with remote organs (eg, the heart) through its endocrine function. BAT expands in response to exercise, but its involvement in exercise cardioprotection remains undefined. OBJECTIVE: This study investigated whether small extracellular vesicles (sEVs) secreted by BAT and their contained microRNAs (miRNAs) regulate cardiomyocyte survival and participate in exercise cardioprotection in the context of myocardial ischemia/reperfusion (MI/R) injury. METHODS AND RESULTS: Four weeks of exercise resulted in a significant BAT expansion in mice. Surgical BAT ablation before MI/R weakened the salutary effects of exercise. Adeno-associated virus 9 vectors carrying short hairpin RNA targeting Rab27a (a GTPase required for sEV secretion) or control viruses were injected in situ into the interscapular BAT. Exercise-mediated protection against MI/R injury was greatly attenuated in mice whose BAT sEV secretion was suppressed by Rab27a silencing. Intramyocardial injection of the BAT sEVs ameliorated MI/R injury, revealing the cardioprotective potential of BAT sEVs. Discovery-driven experiments identified miR-125b-5p, miR-128-3p, and miR-30d-5p (referred to as the BAT miRNAs) as essential BAT sEV components for mediating cardioprotection. BAT-specific inhibition of the BAT miRNAs prevented their upregulation in plasma sEVs and hearts of exercised mice and attenuated exercise cardioprotection. Mechanistically, the BAT miRNAs cooperatively suppressed the proapoptotic MAPK (mitogen-associated protein kinase) pathway by targeting a series of molecules (eg, Map3k5, Map2k7, and Map2k4) in the signaling cascade. Delivery of BAT sEVs into hearts or cardiomyocytes suppressed MI/R-related MAPK pathway activation, an effect that disappeared with the combined use of the BAT miRNA inhibitors. CONCLUSIONS: The sEVs secreted by BAT participate in exercise cardioprotection via delivering the cardioprotective miRNAs into the heart. These results provide novel insights into the mechanisms underlying the BAT-cardiomyocyte interaction and highlight BAT sEVs and their contained miRNAs as alternative candidates for exercise cardioprotection.


Asunto(s)
Vesículas Extracelulares , MicroARNs , Daño por Reperfusión Miocárdica , Tejido Adiposo Pardo/metabolismo , Animales , Vesículas Extracelulares/metabolismo , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/prevención & control , Miocitos Cardíacos/metabolismo , Condicionamiento Físico Animal
7.
Cell Mol Biol (Noisy-le-grand) ; 70(4): 225-230, 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38678600

RESUMEN

This study compared the therapeutic effect and safety between warfarin anticoagulation and percutaneous left atrial appendage transcatheter occlusion (PLAATO) in non-valvular atrial fibrillation (NVAF). A total of 110 patients were selected and assigned to Control group (n=55) and Observation group (n=55). The control patients were used warfarin, while the observation patients were performed PLAATO. The coagulation function, stroke and bleeding scores were compared between the two groups at different times. Left ventricular function before therapy and 1 year after therapy and adverse events during follow-up were compared between the two groups. After one month of treatment, CHA2DS2-VASC, HAS-BLED score, serum ET-1 and hs-CRP levels were lower in the PLAATO patients than in warfarin patients, but serum PDGFs levels were higher than patients in the warfarin patients (P < 0.05). One month after treatment, the activated partial thromboplastin time (APTT), prothrombin time (PT), and thrombin time (TT) of the PLAATO patients was longer than that of the warfarin patients (P < 0.05), but the levels of fibrinogen (FIB) in the PLAATO patients were lower than that of the warfarin patients (P < 0.05). In addition, one year after therapy, the left atrial end-diastolic volume (LAEDV), left atrial end-systolic volume (LAESV) and left atrial inner diameter of the two groups were significantly reduced (P < 0.05). Left atrial appendage (LAA) occlusion can effectively improve the cardiac function and coagulation function of NVAF patients, with lower incidence of bleeding events, stroke events and higher safety.


Asunto(s)
Anticoagulantes , Fibrilación Atrial , Coagulación Sanguínea , Cierre del Apéndice Auricular Izquierdo , Warfarina , Warfarina/efectos adversos , Warfarina/farmacología , Anticoagulantes/efectos adversos , Anticoagulantes/farmacología , Fibrilación Atrial/sangre , Fibrilación Atrial/terapia , Apéndice Atrial/fisiopatología , Accidente Cerebrovascular/etiología , Humanos , Masculino , Femenino , Persona de Mediana Edad , Anciano , Hemorragia/etiología , Tiempo de Tromboplastina Parcial , Tiempo de Protrombina , Tiempo de Trombina , Coagulación Sanguínea/efectos de los fármacos , Endotelina-1/sangre , Proteína C-Reactiva/análisis
8.
BMC Cardiovasc Disord ; 24(1): 319, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38914951

RESUMEN

BACKGROUND: Percutaneous coronary intervention (PCI) with primary stenting, which stands for stent implantation regardless of obtaining satisfactory results with balloon angioplasty, has superseded conventional plain old balloon angioplasty with provisional stenting. With drug-coated balloon (DCB), primary DCB angioplasty with provisional stenting has shown non-inferiority to primary stenting for de novo coronary small vessel disease. However, the long-term efficacy and safety of such a strategy to the primary stenting on clinical endpoints in de novo lesions without vessel diameter restrictions remain uncertain. STUDY DESIGN: The REC-CAGEFREE I is an investigator-initiated, multicenter, randomized, open-label trial aimed to enroll 2270 patients with acute or chronic coronary syndrome from 43 interventional cardiology centers in China to evaluate the non-inferiority of primary paclitaxel-coated balloons angioplasty to primary stenting for the treatment of de novo, non-complex lesions without vessel diameter restrictions. Patients who fulfill all the inclusion and exclusion criteria and have achieved a successful lesion pre-dilatation will be randomly assigned to the two arms in a 1:1 ratio. Protocol-guided DCB angioplasty and bailout stenting after unsatisfactory angioplasty are mandatory in the primary DCB angioplasty group. The second-generation sirolimus-eluting stent will be used as a bailout stent in the primary DCB angioplasty group and the treatment device in the primary stenting group. The primary endpoint is the incidence of Device-oriented Composite Endpoint (DoCE) within 24 months after randomization, including cardiac death, target vessel myocardial infarction, and clinically and physiologically indicated target lesion revascularization. DISCUSSION: The ongoing REC-CAGEFREE I trial is the first randomized trial with a clinical endpoint to assess the efficacy and safety of primary DCB angioplasty for the treatment of de novo, non-complex lesions without vessel diameter restrictions. If non-inferiority is shown, PCI with primary DCB angioplasty could be an alternative treatment option to primary stenting. TRIAL REGISTRATION: Registered on clinicaltrial.gov (NCT04561739).


Asunto(s)
Angioplastia Coronaria con Balón , Catéteres Cardíacos , Fármacos Cardiovasculares , Materiales Biocompatibles Revestidos , Enfermedad de la Arteria Coronaria , Paclitaxel , Humanos , Angioplastia Coronaria con Balón/instrumentación , Angioplastia Coronaria con Balón/efectos adversos , Angioplastia Coronaria con Balón/mortalidad , Resultado del Tratamiento , Fármacos Cardiovasculares/administración & dosificación , Fármacos Cardiovasculares/efectos adversos , China , Paclitaxel/administración & dosificación , Paclitaxel/efectos adversos , Enfermedad de la Arteria Coronaria/terapia , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Enfermedad de la Arteria Coronaria/mortalidad , Factores de Tiempo , Femenino , Masculino , Persona de Mediana Edad , Estudios Multicéntricos como Asunto , Stents , Anciano , Stents Liberadores de Fármacos , Estudios de Equivalencia como Asunto , Ensayos Clínicos Controlados Aleatorios como Asunto
9.
BMC Cardiovasc Disord ; 24(1): 62, 2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38245724

RESUMEN

BACKGROUND: Patients treated with drug-coated balloons (DCB) have the theoretical advantage of adopting a low-intensity antiplatelet regimen due to the absence of struts and polymers. Nevertheless, the optimal antiplatelet strategy for patients undergoing DCB-only treatment remains a topic of debate and has not been investigated in randomized trials. METHODS: The REC-CAGEFREE II is an investigator-initiated, prospective, open-label, multi-center, randomized, non-inferiority trial aimed to enroll 1908 patients from ≥ 40 interventional cardiology centers in China to evaluate the non-inferiority of an antiplatelet regimen consisting of Aspirin plus Ticagrelor for one month, followed by five months Ticagrelor monotherapy, and then Aspirin monotherapy for six months (Experimental group) compared to the conventional treatment of Aspirin plus Ticagrelor for 12 months (Reference group) in patients with acute coronary syndrome (ACS) who have undergone percutaneous coronary intervention (PCI) using paclitaxel-coated balloons (DCB) exclusively. Participants will be randomly assigned to the Experimental or Reference group in a 1:1 ratio. The randomization will be stratified based on the center and the type of lesion being treated (De novo or in-stent restenosis). The primary endpoint is net adverse clinical events (NACE) within 12 months of PCI, which includes the composite of all-cause death, any stroke, any myocardial infarction, any revascularization and Bleeding Academic Research Consortium (BARC) defined type 3 or 5 bleeding. The secondary endpoint, any ischemic and bleeding event, which includes all-cause death, any stroke, MI, BARC-defined type 3 bleeding, any revascularization, and BARC-defined type 2 bleeding events, will be treated as having hierarchical clinical importance in the above order and analyzed using the win ratio method. DISCUSSION: The ongoing REC-CAGEFREE II trial aims to assess the efficacy and safety of a low-intensity antiplatelet approach among ACS patients with DCB. If non-inferiority is shown, the novel antiplatelet approach could provide an alternative treatment for ACS patients with DCB. TRIAL REGISTRATION: ClinicalTrials.gov identifier: NCT04971356.


Asunto(s)
Síndrome Coronario Agudo , Intervención Coronaria Percutánea , Accidente Cerebrovascular , Humanos , Síndrome Coronario Agudo/terapia , Síndrome Coronario Agudo/tratamiento farmacológico , Aspirina , Quimioterapia Combinada , Hemorragia/inducido químicamente , Intervención Coronaria Percutánea/efectos adversos , Intervención Coronaria Percutánea/métodos , Inhibidores de Agregación Plaquetaria/uso terapéutico , Estudios Prospectivos , Accidente Cerebrovascular/etiología , Ticagrelor/uso terapéutico , Resultado del Tratamiento , Ensayos Clínicos Controlados Aleatorios como Asunto , Estudios Multicéntricos como Asunto , Estudios de Equivalencia como Asunto
10.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33723013

RESUMEN

With the increasing demand for net-zero sustainable aviation fuels (SAF), new conversion technologies are needed to process waste feedstocks and meet carbon reduction and cost targets. Wet waste is a low-cost, prevalent feedstock with the energy potential to displace over 20% of US jet fuel consumption; however, its complexity and high moisture typically relegates its use to methane production from anaerobic digestion. To overcome this, methanogenesis can be arrested during fermentation to instead produce C2 to C8 volatile fatty acids (VFA) for catalytic upgrading to SAF. Here, we evaluate the catalytic conversion of food waste-derived VFAs to produce n-paraffin SAF for near-term use as a 10 vol% blend for ASTM "Fast Track" qualification and produce a highly branched, isoparaffin VFA-SAF to increase the renewable blend limit. VFA ketonization models assessed the carbon chain length distributions suitable for each VFA-SAF conversion pathway, and food waste-derived VFA ketonization was demonstrated for >100 h of time on stream at approximately theoretical yield. Fuel property blending models and experimental testing determined normal paraffin VFA-SAF meets 10 vol% fuel specifications for "Fast Track." Synergistic blending with isoparaffin VFA-SAF increased the blend limit to 70 vol% by addressing flashpoint and viscosity constraints, with sooting 34% lower than fossil jet. Techno-economic analysis evaluated the major catalytic process cost-drivers, determining the minimum fuel selling price as a function of VFA production costs. Life cycle analysis determined that if food waste is diverted from landfills to avoid methane emissions, VFA-SAF could enable up to 165% reduction in greenhouse gas emissions relative to fossil jet.


Asunto(s)
Biocombustibles , Ácidos Grasos Volátiles/metabolismo , Alimentos , Eliminación de Residuos , Aviación , Catálisis , Gases de Efecto Invernadero , Metano
11.
Pediatr Cardiol ; 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38822852

RESUMEN

The support has been provided by clinical trials and guidelines for managing patent foramen ovale (PFO) in adults; however, the optimal approach is still unclear for treating PFO in pediatric patients. PFO and its associated clinical syndromes, imaging diagnosis, and management in pediatric patients were analyzed by a comprehensive analysis. Extensive research was performed using electronic databases, including PubMed, Cochrane, Web of Science, and EMBASE. This review includes the studies published until February 1st, 2024. A total of 583 articles were obtained, of which 54 were included in the comprehensive review. Numerous evidences have indicated that a right-to-left shunt through a PFO may be involved in cryptogenic stroke in children, although the connection between migraine and aura has not been substantiated by robust evidence. Children with sickle cell disease and a PFO were at higher risks of paradoxical embolization, rare syndromes caused by PFO could also occur in children such as platypnea-orthodeoxia syndrome, myocardial infarction, and decompression sickness. Contrast transthoracic echocardiography was deemed the most appropriate examination for children due to its favorable transthoracic windows, eliminating the need for anesthesia. This review suggested that the additional treatment was not needed as no evidence was provided for potential future complications linked to isolated PFO in children. For children facing unique circumstances related to PFO, a customized interdisciplinary consultation is essential prior to considering medical interventions.

12.
Biochem Biophys Res Commun ; 671: 246-254, 2023 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-37307708

RESUMEN

Vascular dementia (VaD), the second most common type of dementia, is attributed to lower cerebral blood flow. To date, there is still no available clinical treatment for VaD. The phenolic glucoside gastrodin (GAS) is known for its neuroprotective effects, but the role and mechanisms of action on VD remains unclear. In this study, we aim to investigate the neuroprotective role and underlying mechanisms of GAS on chronic cerebral hypoperfusion (CCH)-mediated VaD rats and hypoxia-induced injury of HT22 cells. The study showed that GAS relieved learning and memory deficits, ameliorated hippocampus histological lesions in VaD rats. Additionally, GAS down-regulated LC3II/I, Beclin-1 levels and up-regulated P62 level in VaD rats and hypoxia-injured HT22 cells. Notably, GAS rescued the phosphorylation of PI3K/AKT pathway-related proteins expression, which regulates autophagy. Mechanistic studies verify that YP-740, a PI3K agonist, significantly resulted in inhibition of excessive autophagy and apoptosis with no significant differences were observed in the YP-740 and GAS co-treatment. Meantime, we found that LY294002, a PI3K inhibitor, substantially abolished GAS-mediated neuroprotection. These results revealed that the effects of GAS on VaD are related to stimulating PI3K/AKT pathway-mediated autophagy, suggesting a potentially beneficial therapeutic strategy for VaD.


Asunto(s)
Disfunción Cognitiva , Demencia Vascular , Fármacos Neuroprotectores , Ratas , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Demencia Vascular/tratamiento farmacológico , Demencia Vascular/patología , Ratas Sprague-Dawley , Transducción de Señal , Autofagia , Glucósidos/farmacología , Glucósidos/uso terapéutico , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Disfunción Cognitiva/metabolismo , Hipoxia/tratamiento farmacológico
13.
Appl Environ Microbiol ; 89(6): e0074723, 2023 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-37272815

RESUMEN

Host-associated microbiotas are known to influence host health by aiding digestion, metabolism, nutrition, physiology, immune function, and pathogen resistance. Although an increasing number of studies have investigated the avian microbiome, there is a lack of research on the gut microbiotas of wild birds, especially endangered pheasants. Owing to the difficulty of characterizing the dynamics of dietary composition, especially in omnivores, how the gut microbiotas of birds respond to seasonal dietary changes remains poorly understood. The Sichuan partridge (Arborophila rufipectus) is an endangered pheasant species with a small population endemic to the mountains of southwest China. Here, 16S rRNA sequencing and Tax4Fun were used to characterize and compare community structure and functions of the gut microbiota in the Sichuan partridges across three critical periods of their annual life cycle (breeding, postbreeding wandering, and overwintering). We found that the microbial communities were dominated by Firmicutes, Proteobacteria, Actinobacteria, and Cyanobacteria throughout the year. Diversity of the gut microbiotas was highest during postbreeding wandering and lowest during the overwintering periods. Seasonal dietary changes and reassembly of the gut microbial community occurred consistently. Composition, diversity, and functions of the gut microbiota exhibited diet-associated variations, which might facilitate host adaptation to diverse diets in response to environmental shifts. Moreover, 28 potential pathogenic genera were detected, and their composition differed significantly between the three periods. Investigation of the wild bird gut microbiota dynamics has enhanced our understanding of diet-microbiota associations over the annual life cycle of birds, aiding in the integrative conservation of this endangered bird. IMPORTANCE Characterizing the gut microbiotas of wild birds across seasons will shed light on their annual life cycle. Due to sampling difficulties and the lack of detailed dietary information, studies on how the gut microbiota adapts to seasonal dietary changes of wild birds are scarce. Based on more detailed dietary composition, we found a seasonal reshaping pattern of the gut microbiota of Sichuan partridges corresponding to their seasonal dietary changes. The variation in diet and gut microbiota potentially facilitated the diversity of dietary niches of this endangered pheasant, revealing a seasonal diet-microbiota association across the three periods of the annual cycle. In addition, identifying a variety of potentially pathogenic bacterial genera aids in managing the health and improving survival of Sichuan partridges. Incorporation of microbiome research in the conservation of endangered species contributes to our comprehensive understanding the diet-host-microbiota relationship in wild birds and refinement of conservation practices.


Asunto(s)
Galliformes , Microbioma Gastrointestinal , Microbiota , Animales , Estaciones del Año , ARN Ribosómico 16S/genética , Bacterias/genética , Especies en Peligro de Extinción , Animales Salvajes , Galliformes/genética
14.
Catheter Cardiovasc Interv ; 101(6): 967-972, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36881746

RESUMEN

OBJECTIVES: We aimed to evaluate the long-term outcomes of the novel NeoVas sirolimus-eluting bioresorbable scaffold (BRS) for the treatment of de novo coronary artery disease. BACKGROUND: The long-term safety and efficacy of the novel NeoVas BRS are still needed to be elucidated. METHODS: A total of 1103 patients with de novo native coronary lesions for coronary stenting were enrolled. The primary endpoint of target lesion failure (TLF) was defined as a composite of cardiac death (CD), target vessel myocardial infarction (TV-MI), or ischemia-driven-target lesion revascularization (ID-TLR). RESULTS: A three-year clinical follow-up period was available for 1,091 (98.9%) patients. The cumulative TLF rate was 7.2% with 0.8% for CD, 2.6% for TV-MI, and 5.1% for ID-TLR. Additionally, 128 (11.8%) patient-oriented composite endpoint and 11 definite/probable stent thromboses (1.0%) were recorded. CONCLUSIONS: The extended outcomes of the NeoVas objective performance criterion trial demonstrated a promising 3-year efficacy and safety of the NeoVas BRS in low-risk patients with low complexity in terms of lesions and comorbidities.


Asunto(s)
Fármacos Cardiovasculares , Enfermedad de la Arteria Coronaria , Stents Liberadores de Fármacos , Infarto del Miocardio , Intervención Coronaria Percutánea , Humanos , Enfermedad de la Arteria Coronaria/terapia , Enfermedad de la Arteria Coronaria/tratamiento farmacológico , Sirolimus/efectos adversos , Implantes Absorbibles , Estudios Prospectivos , Resultado del Tratamiento , Infarto del Miocardio/etiología , Infarto del Miocardio/tratamiento farmacológico , Intervención Coronaria Percutánea/efectos adversos , Fármacos Cardiovasculares/efectos adversos
15.
Analyst ; 148(22): 5745-5752, 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37842723

RESUMEN

Extracellular vesicles (EVs), as a type of subcellular structure, have been extensively researched for their potential for developing advanced diagnostic technologies for various diseases. However, the biomolecular and biophysical heterogeneity of EVs has restricted their application in clinical settings. In this article, we developed a size-exclusion chromatography-based technique for simultaneous EV size subtyping and protein profiling. By eluting fluorescent aptamer-treated patient plasma through a size-exclusion column, the mixture can be classified into 50 nm aptamer-bound EVs, 100 nm aptamer-bound EVs and free-floating aptamers, which could further enable multiplex EV membrane protein profiling by analyzing the fluorescence intensities of EV-bound aptamers. Using this technique, we successfully identified EV size subtypes for differentiating gastrointestinal cancer prognosis states. Overall, we developed a rapid, user-friendly and low-cost EV size subtyping and protein profiling technique, which holds great potential for identifying crucial EV size subtypes for disease diagnosis in the clinic.


Asunto(s)
Vesículas Extracelulares , Neoplasias Gastrointestinales , Humanos , Vesículas Extracelulares/química , Cromatografía en Gel , Pronóstico , Neoplasias Gastrointestinales/diagnóstico , Neoplasias Gastrointestinales/metabolismo , Proteínas de la Membrana/análisis
16.
Proc Natl Acad Sci U S A ; 117(23): 12576-12583, 2020 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-31767762

RESUMEN

Technoeconomic and life-cycle analyses are presented for catalytic conversion of ethanol to fungible hydrocarbon fuel blendstocks, informed by advances in catalyst and process development. Whereas prior work toward this end focused on 3-step processes featuring dehydration, oligomerization, and hydrogenation, the consolidated alcohol dehydration and oligomerization (CADO) approach described here results in 1-step conversion of wet ethanol vapor (40 wt% in water) to hydrocarbons and water over a metal-modified zeolite catalyst. A development project increased liquid hydrocarbon yields from 36% of theoretical to >80%, reduced catalyst cost by an order of magnitude, scaled up the process by 300-fold, and reduced projected costs of ethanol conversion 12-fold. Current CADO products conform most closely to gasoline blendstocks, but can be blended with jet fuel at low levels today, and could potentially be blended at higher levels in the future. Operating plus annualized capital costs for conversion of wet ethanol to fungible blendstocks are estimated at $2.00/GJ for CADO today and $1.44/GJ in the future, similar to the unit energy cost of producing anhydrous ethanol from wet ethanol ($1.46/GJ). Including the cost of ethanol from either corn or future cellulosic biomass but not production incentives, projected minimum selling prices for fungible blendstocks produced via CADO are competitive with conventional jet fuel when oil is $100 per barrel but not at $60 per barrel. However, with existing production incentives, the projected minimum blendstock selling price is competitive with oil at $60 per barrel. Life-cycle greenhouse gas emission reductions for CADO-derived hydrocarbon blendstocks closely follow those for the ethanol feedstock.

17.
Molecules ; 28(9)2023 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-37175187

RESUMEN

Two new stilbenoids, cajanstilbenoid C (1) and cajanstilbenoid D (2), together with eight other known stilbenoids (3-10) and seventeen known flavonoids (11-27), were isolated from the petroleum ether and ethyl acetate portions of the 95% ethanol extract of leaves of Cajanus cajan (L.) Millsp. The planar structures of the new compounds were elucidated by NMR and high-resolution mass spectrometry, and their absolute configurations were determined by comparison of their experimental and calculated electronic circular dichroism (ECD) values. All the compounds were assayed for their inhibitory activities against yeast α-glucosidase. The results demonstrated that compounds 3, 8-9, 11, 13, 19-21, and 24-26 had strong inhibitory activities against α-glucosidase, with compound 11 (IC50 = 0.87 ± 0.05 µM) exhibiting the strongest activity. The structure-activity relationships were preliminarily summarized. Moreover, enzyme kinetics showed that compound 8 was a noncompetitive inhibitor, compounds 11, 24-26 were anticompetitive, and compounds 9 and 13 were mixed-competitive.


Asunto(s)
Cajanus , Estilbenos , Flavonoides/farmacología , Flavonoides/química , Cajanus/química , alfa-Glucosidasas , Estilbenos/farmacología , Estilbenos/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Inhibidores de Glicósido Hidrolasas/farmacología
18.
Rev Cardiovasc Med ; 23(3): 113, 2022 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-35345280

RESUMEN

BACKGROUND: The feasibility and long-term outcomes of the CrossBoss/Stingray for treating coronary chronic total occlusions (CTO) with distal diffuse disease landing zone remain unclear. METHODS: Consecutive CTO patients with distal diffuse lesions that underwent percutaneous coronary intervention by the CrossBoss/Stingray system at Xijing Hospital from April 2016 to October 2020, were included. Patients were analyzed by two groups according to the extent of stenosis in the distal landing zone: 50%-70% stenosis (moderate stenosis group) and >70% stenosis (severe stenosis group). The primary efficacy outcome was technical success, defined as the frequency of true lumen guidewire placement distal to the CTO. The composite endpoint of all-cause death, any stroke, or any revascularization was also explored. RESULTS: A total of 91 consecutive patients were included, with 32 patients in the moderate stenosis group and 59 patients in the severe stenosis group. The mean J-CTO score was 2.5 ± 1.1. The technical success rate was 79.1% (72/91) in the overall population and was similar between the 2 groups: 78.1% (25/32) and 79.7% (47/59) (p = 0.608). No coronary perforation occurred. With a median follow-up of 29 months (IQR: 53-92), the estimated rate of the composite endpoint of all-cause death, any stroke, or any revascularization was 50.4% (all-cause death: 16.6%, any stroke: 1.1%, any revascularization: 36.5%) in the overall population. No significant difference was observed in the rate of the composite endpoint between the moderate stenosis group and the severe stenosis group (45.1% vs. 54.3%, respectively, p = 0.797). CONCLUSIONS: In CTO lesions with distal diffuse disease landing zone, the technical success rates of CrossBoss/Stingray and the long-term clinical outcomes were not significantly different between the moderate stenosis group (50%-70%) and the severe stenosis group (>70%). However, the relatively high rate of long-term clinical outcomes, especially any revascularization, warrants further investigations on this indication in future studies.


Asunto(s)
Oclusión Coronaria , Intervención Coronaria Percutánea , Rajidae , Accidente Cerebrovascular , Animales , Enfermedad Crónica , Constricción Patológica/etiología , Angiografía Coronaria , Oclusión Coronaria/diagnóstico por imagen , Oclusión Coronaria/terapia , Estudios de Factibilidad , Humanos , Intervención Coronaria Percutánea/efectos adversos , Resultado del Tratamiento
19.
Respir Res ; 23(1): 209, 2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-35986277

RESUMEN

BACKGROUND: Pulmonary hypertension (PH) is a progressive and fatal cardiopulmonary disease characterized by pulmonary vascular remodeling and increased pulmonary vascular resistance and artery pressure. Vascular remodeling is associated with the excessive cell proliferation and migration of pulmonary artery smooth muscle cells (PASMCs). In this paper, the effects of heat shock protein-110 (HSP110) on PH were investigated. METHODS: The C57BL/6 mice and human PASMCs (HPASMCs) were respectively exposed to hypoxia to establish and simulate PH model in vivo and cell experiment in vitro. To HSP110 knockdown, the hypoxia mice and HPASMCs were infected with adeno-associated virus or adenovirus carring the shRNAs (short hairpin RNAs) for HSP110 (shHSP110). For HSP110 and yes-associated protein (YAP) overexpression, HPASMCs were infected with adenovirus vector carring the cDNA of HSP110 or YAP. The effects of HSP110 on PH development in mice and cell proliferation, migration and autophagy of PASMCs under hypoxia were assessed. Moreover, the regulatory mechanisms among HSP110, YAP and TEA domain transcription factor 4 (TEAD4) were investigated. RESULTS: We demonstrated that expression of HSP110 was significantly increased in the pulmonary arteries of mice and HPASMCs under hypoxia. Moreover, knockdown of HSP110 alleviated hypoxia-induced right ventricle systolic pressure, vascular wall thickening, right ventricular hypertrophy, autophagy and proliferation of PASMCs in mice. In addition, knockdown of HSP110 inhibited the increases of proliferation, migration and autophagy of HPASMCs that induced by hypoxia in vitro. Mechanistically, HSP110 knockdown inhibited YAP and transcriptional co-activator with PDZ-binding motif (TAZ) activity and TEAD4 nuclear expression under hypoxia. However, overexpression of HSP110 exhibited the opposite results in HPASMCs. Additionally, overexpression of YAP partially restored the effects of shHSP110 on HPASMCs. The interaction of HSP110 and YAP was verified. Moreover, TEAD4 could promote the transcriptional activity of HSP110 by binding to the HSP110 promoter under hypoxia. CONCLUSIONS: Our findings suggest that HSP110 might contribute to the development of PH by regulating the proliferation, migration and autophagy of PASMCs through YAP/TAZ-TEAD4 pathway, which may help to understand deeper the pathogenic mechanism in PH development.


Asunto(s)
Hipertensión Pulmonar , Animales , Movimiento Celular/genética , Proliferación Celular/genética , Células Cultivadas , Proteínas de Unión al ADN , Proteínas del Choque Térmico HSP110/metabolismo , Proteínas del Choque Térmico HSP110/farmacología , Humanos , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/prevención & control , Hipoxia/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteínas Musculares/metabolismo , Miocitos del Músculo Liso/metabolismo , Arteria Pulmonar/metabolismo , Factores de Transcripción de Dominio TEA , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Remodelación Vascular
20.
Circ Res ; 126(7): 857-874, 2020 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-32079489

RESUMEN

RATIONALE: Mesenchymal stromal cell-based therapy is promising against ischemic heart failure. However, its efficacy is limited due to low cell retention and poor paracrine function. A transmembrane protein capable of enhancing cell-cell adhesion, N-cadherin garnered attention in the field of stem cell biology only recently. OBJECTIVE: The current study investigates whether and how N-cadherin may regulate mesenchymal stromal cells retention and cardioprotective capability against ischemic heart failure. METHODS AND RESULTS: Adult mice-derived adipose tissue-derived mesenchymal stromal cells (ADSC) were transfected with adenovirus harboring N-cadherin, T-cadherin, or control adenovirus. CM-DiI-labeled ADSC were intramyocardially injected into the infarct border zone at 3 sites immediately after myocardial infarction (MI) or myocardial ischemia/reperfusion. ADSC retention/survival, cardiomyocyte apoptosis/proliferation, capillary density, cardiac fibrosis, and cardiac function were determined. Discovery-driven/cause-effect analysis was used to determine the molecular mechanisms. Compared with ADSC transfected with adenovirus-control, N-cadherin overexpression (but not T-cadherin) markedly increased engrafted ADSC survival/retention up to 7 days post-MI. Histological analysis revealed that ADSC transfected with adenovirus-N-cadherin significantly preserved capillary density and increased cardiomyocyte proliferation and moderately reduced cardiomyocyte apoptosis 3 days post-MI. More importantly, ADSC transfected with adenovirus-N-cadherin (but not ADSC transfected with adenovirus-T-cadherin) significantly increased left ventricular ejection fraction and reduced fibrosis in both MI and myocardial ischemia/reperfusion mice. In vitro experiments demonstrated that N-cadherin overexpression promoted ADSC-cardiomyocyte adhesion and ADSC migration, enhancing their capability to increase angiogenesis and cardiomyocyte proliferation. MMP (matrix metallopeptidases)-10/13 and HGF (hepatocyte growth factor) upregulation is responsible for N-cadherin's effect upon ADSC migration and paracrine angiogenesis. N-cadherin overexpression promotes cardiomyocyte proliferation by HGF release. Mechanistically, N-cadherin overexpression significantly increased N-cadherin/ß-catenin complex formation and active ß-catenin levels in the nucleus. ß-catenin knockdown abolished N-cadherin overexpression-induced MMP-10, MMP-13, and HGF expression and blocked the cellular actions and cardioprotective effects of ADSC overexpressing N-cadherin. CONCLUSIONS: We demonstrate for the first time that N-cadherin overexpression enhances mesenchymal stromal cells-protective effects against ischemic heart failure via ß-catenin-mediated MMP-10/MMP-13/HGF expression and production, promoting ADSC/cardiomyocyte adhesion and ADSC retention.


Asunto(s)
Tejido Adiposo/citología , Cadherinas/metabolismo , Células Madre Mesenquimatosas/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , beta Catenina/metabolismo , Animales , Apoptosis , Cadherinas/genética , Adhesión Celular , Proliferación Celular , Células Cultivadas , Factor de Crecimiento de Hepatocito/metabolismo , Metaloproteinasa 10 de la Matriz/metabolismo , Metaloproteinasa 13 de la Matriz/metabolismo , Trasplante de Células Madre Mesenquimatosas/métodos , Ratones , Daño por Reperfusión Miocárdica/terapia , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA