Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
BMC Plant Biol ; 23(1): 91, 2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36782130

RESUMEN

BACKGROUND: Mitochondria are organelles within eukaryotic cells that are central to the metabolic processes of cellular respiration and ATP production. However, the evolution of mitochondrial genomes (mitogenomes) in plants is virtually unknown compared to animal mitogenomes or plant plastids, due to complex structural variation and long stretches of repetitive DNA making accurate genome assembly more challenging. Comparing the structural and sequence differences of organellar genomes within and between sorghum species is an essential step in understanding evolutionary processes such as organellar sequence transfer to the nuclear genome as well as improving agronomic traits in sorghum related to cellular metabolism. RESULTS: Here, we assembled seven sorghum mitochondrial and plastid genomes and resolved reticulated mitogenome structures with multilinked relationships that could be grouped into three structural conformations that differ in the content of repeats and genes by contig. The grouping of these mitogenome structural types reflects the two domestication events for sorghum in east and west Africa. CONCLUSIONS: We report seven mitogenomes of sorghum from different cultivars and wild sources. The assembly method used here will be helpful in resolving complex genomic structures in other plant species. Our findings give new insights into the structure of sorghum mitogenomes that provides an important foundation for future research into the improvement of sorghum traits related to cellular respiration, cytonuclear incompatibly, and disease resistance.


Asunto(s)
Genoma Mitocondrial , Sorghum , Genoma Mitocondrial/genética , Sorghum/genética , Filogenia , Domesticación , Plantas/genética , Núcleo Celular , Evolución Molecular , Genoma de Planta/genética
2.
Theor Appl Genet ; 136(10): 209, 2023 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-37715848

RESUMEN

KEY MESSAGE: This study quantified genetic variation in root system architecture (root number, angle, length and dry mass) within a diversity panel of 1771 Ethiopian sorghum landraces and identified 22 genomic regions associated with the root variations. The root system architecture (RSA) of crop plants influences adaptation to water-limited conditions and determines the capacity of a plant to access soil water and nutrients. Four key root traits (number, angle, length and dry mass) were evaluated in a diversity panel of 1771 Ethiopian sorghum landraces using purpose-built root chambers. Significant genetic variation was observed in all studied root traits, with nodal root angle ranging from 16.4° to 26.6°, with a high repeatability of 78.9%. Genome wide association studies identified a total of 22 genomic regions associated with root traits which were distributed on all chromosomes except chromosome SBI-10. Among the 22 root genomic regions, 15 co-located with RSA trait QTL previously identified in sorghum, with the remaining seven representing novel RSA QTL. The majority (85.7%) of identified root angle QTL also co-localized with QTL previously identified for stay-green in sorghum. This suggests that the stay-green phenotype might be associated with root architecture that enhances water extraction during water stress conditions. The results open avenues for manipulating root phenotypes to improve productivity in abiotic stress environments via marker-assisted selection.


Asunto(s)
Estudio de Asociación del Genoma Completo , Sorghum , Sorghum/genética , Grano Comestible , Genómica , Nutrientes
3.
Plant J ; 108(1): 231-243, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34309934

RESUMEN

Variation in grain size, a major determinant of grain yield and quality in cereal crops, is determined by both the plant's genetic potential and the available assimilate to fill the grain in the absence of stress. This study investigated grain size variation in response to variation in assimilate supply in sorghum using a diversity panel (n = 837) and a backcross-nested association mapping population (n = 1421) across four experiments. To explore the effects of genetic potential and assimilate availability on grain size, the top half of selected panicles was removed at anthesis. Results showed substantial variation in five grain size parameters with high heritability. Artificial reduction in grain number resulted in a general increase in grain weight, with the extent of the increase varying across genotypes. Genome-wide association studies identified 44 grain size quantitative trait locus (QTL) that were likely to act on assimilate availability and 50 QTL that were likely to act on genetic potential. This finding was further supported by functional enrichment analysis and co-location analysis with known grain number QTL and candidate genes. RNA interference and overexpression experiments were conducted to validate the function of one of the identified gene, SbDEP1, showing that SbDEP1 positively regulates grain number and negatively regulates grain size by controlling primary branching in sorghum. Haplotype analysis of SbDEP1 suggested a possible role in racial differentiation. The enhanced understanding of grain size variation in relation to assimilate availability presented in this study will benefit sorghum improvement and have implications for other cereal crops.


Asunto(s)
Sitios de Carácter Cuantitativo/genética , Sorghum/genética , Productos Agrícolas , Grano Comestible/genética , Grano Comestible/crecimiento & desarrollo , Estudio de Asociación del Genoma Completo , Genotipo , Haplotipos , Fenotipo , Semillas/genética , Semillas/crecimiento & desarrollo , Sorghum/crecimiento & desarrollo
4.
J Exp Bot ; 73(3): 801-816, 2022 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-34698817

RESUMEN

Developing sorghum genotypes adapted to different light environments requires understanding of a plant's ability to capture light, determined through leaf angle specifically. This study dissected the genetic basis of leaf angle in 3 year field trials at two sites, using a sorghum diversity panel (729 accessions). A wide range of variation in leaf angle with medium heritability was observed. Leaf angle explained 36% variation in canopy light extinction coefficient, highlighting the extent to which variation in leaf angle influences light interception at the whole-canopy level. This study also found that the sorghum races of Guinea and Durra consistently having the largest and smallest leaf angle, respectively, highlighting the potential role of leaf angle in adaptation to distinct environments. The genome-wide association study detected 33 quantitative trait loci (QTLs) associated with leaf angle. Strong synteny was observed with previously detected leaf angle QTLs in maize (70%) and rice (40%) within 10 cM, among which the overlap was significantly enriched according to χ2 tests, suggesting a highly consistent genetic control in grasses. A priori leaf angle candidate genes identified in maize and rice were found to be enriched within a 1-cM window around the sorghum leaf angle QTLs. Additionally, protein domain analysis identified the WD40 protein domain as being enriched within a 1-cM window around the QTLs. These outcomes show that there is sufficient heritability and natural variation in the angle of upper leaves in sorghum which may be exploited to change light interception and optimize crop canopies for different contexts.


Asunto(s)
Sorghum , Grano Comestible/genética , Estudio de Asociación del Genoma Completo , Hojas de la Planta/genética , Sitios de Carácter Cuantitativo/genética , Sorghum/genética
5.
Theor Appl Genet ; 135(9): 3057-3071, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35933636

RESUMEN

KEY MESSAGE: Leaf width was correlated with plant-level transpiration efficiency and associated with 19 QTL in sorghum, suggesting it could be a surrogate for transpiration efficiency in large breeding program. Enhancing plant transpiration efficiency (TE) by reducing transpiration without compromising photosynthesis and yield is a desirable selection target in crop improvement programs. While narrow individual leaf width has been correlated with greater intrinsic water use efficiency in C4 species, the extent to which this translates to greater plant TE has not been investigated. The aims of this study were to evaluate the correlation of leaf width with TE at the whole-plant scale and investigate the genetic control of leaf width in sorghum. Two lysimetry experiments using 16 genotypes varying for stomatal conductance and three field trials using a large sorghum diversity panel (n = 701 lines) were conducted. Negative associations of leaf width with plant TE were found in the lysimetry experiments, suggesting narrow leaves may result in reduced plant transpiration without trade-offs in biomass accumulation. A wide range in width of the largest leaf was found in the sorghum diversity panel with consistent ranking among sorghum races, suggesting that environmental adaptation may have a role in modifying leaf width. Nineteen QTL were identified by genome-wide association studies on leaf width adjusted for flowering time. The QTL identified showed high levels of correspondence with those in maize and rice, suggesting similarities in the genetic control of leaf width across cereals. Three a priori candidate genes for leaf width, previously found to regulate dorsoventrality, were identified based on a 1-cM threshold. This study provides useful physiological and genetic insights for potential manipulation of leaf width to improve plant adaptation to diverse environments.


Asunto(s)
Sorghum , Grano Comestible/genética , Estudio de Asociación del Genoma Completo , Fitomejoramiento , Hojas de la Planta/genética , Transpiración de Plantas/genética , Sorghum/genética , Agua/fisiología
6.
Plant Biotechnol J ; 18(4): 1093-1105, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31659829

RESUMEN

Grain size is a key yield component of cereal crops and a major quality attribute. It is determined by a genotype's genetic potential and its capacity to fill the grains. This study aims to dissect the genetic architecture of grain size in sorghum. An integrated genome-wide association study (GWAS) was conducted using a diversity panel (n = 837) and a BC-NAM population (n = 1421). To isolate genetic effects associated with genetic potential of grain size, rather than the genotype's capacity to fill the grains, a treatment of removing half of the panicle was imposed during flowering. Extensive and highly heritable variation in grain size was observed in both populations in 5 field trials, and 81 grain size QTL were identified in subsequent GWAS. These QTL were enriched for orthologues of known grain size genes in rice and maize, and had significant overlap with SNPs associated with grain size in rice and maize, supporting common genetic control of this trait among cereals. Grain size genes with opposite effect on grain number were less likely to overlap with the grain size QTL from this study, indicating the treatment facilitated identification of genetic regions related to the genetic potential of grain size. These results enhance understanding of the genetic architecture of grain size in cereal, and pave the way for exploration of underlying molecular mechanisms and manipulation of this trait in breeding practices.


Asunto(s)
Estudios de Asociación Genética , Semillas/crecimiento & desarrollo , Sorghum/genética , Fenotipo , Sitios de Carácter Cuantitativo , Sorghum/crecimiento & desarrollo
7.
Theor Appl Genet ; 133(11): 3201-3215, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32833037

RESUMEN

KEY MESSAGE: We detected 213 lodging QTLs and demonstrated that drought-induced stem lodging in grain sorghum is substantially associated with stay-green and plant height suggesting a critical role of carbon remobilisation. Sorghum is generally grown in water limited conditions and often lodges under post-anthesis drought, which reduces yield and quality. Due to its complexity, our understanding on the genetic control of lodging is very limited. We dissected the genetic architecture of lodging in grain sorghum through genome-wide association study (GWAS) on 2308 unique hybrids grown in 17 Australian sorghum trials over 3 years. The GWAS detected 213 QTLs, the majority of which showed a significant association with leaf senescence and plant height (72% and 71%, respectively). Only 16 lodging QTLs were not associated with either leaf senescence or plant height. The high incidence of multi-trait association for the lodging QTLs indicates that lodging in grain sorghum is mainly associated with plant height and traits linked to carbohydrate remobilisation. This result supported the selection for stay-green (delayed leaf senescence) to reduce lodging susceptibility, rather than selection for short stature and lodging resistance per se, which likely reduces yield. Additionally, our data suggested a protective effect of stay-green on weakening the association between lodging susceptibility and plant height. Our study also showed that lodging resistance might be improved by selection for stem composition but was unlikely to be improved by selection for classical resistance to stalk rots.


Asunto(s)
Carbono/metabolismo , Sequías , Sitios de Carácter Cuantitativo , Sorghum/crecimiento & desarrollo , Sorghum/genética , Australia , Metabolismo de los Hidratos de Carbono , Estudios de Asociación Genética , Haplotipos , Fenotipo , Tallos de la Planta/crecimiento & desarrollo
8.
Phytopathology ; 110(4): 881-891, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31855502

RESUMEN

Net form net blotch (NFNB), caused by the fungal pathogen Pyrenophora teres f. teres, is an important foliar disease present in all barley-producing regions of the world. This fungus is a hemibiotrophic and heterothallic ascomycete, where sexual recombination can lead to changes in disease expression in the host. Knowledge of the genetic architecture and genes involved in virulence is vital to increase the durability of NFNB resistance in barley cultivars. We used a genome-wide association mapping approach to characterize P. teres f. teres genomic regions associated with virulence in Australian barley cultivars. One hundred eighty-eight P. teres f. teres isolates collected across five Australian states were genotyped using Diversity Arrays Technology sequence markers and phenotyped across 20 different barley genotypes. Association mapping identified 14 different genomic regions associated with virulence, with the majority located on P. teres f. teres chromosomes 3 and 5 and one each present on chromosomes 1, 6, and 9. Four of the regions identified were confirmed by quantitative trait loci (QTL) mapping. The QTL regions are discussed in the context of their genomic architecture together with examination of their gene contents, which identified 20 predicted effectors. The number of QTL shown in this study at the population level clearly illustrates a complex genetic basis of P. teres f. teres virulence compared with pure necrotrophs, such as the wheat pathogens Parastagonospora nodorum and Parastagonospora tritici-repentis.


Asunto(s)
Ascomicetos , Estudio de Asociación del Genoma Completo , Australia , Genómica , Hordeum , Enfermedades de las Plantas , Virulencia
9.
Theor Appl Genet ; 132(3): 751-766, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30343386

RESUMEN

KEY MESSAGE: We describe the development and application of the Sorghum QTL Atlas, a high-resolution, open-access research platform to facilitate candidate gene identification across three cereal species, sorghum, maize and rice. The mechanisms governing the genetic control of many quantitative traits are only poorly understood and have yet to be fully exploited. Over the last two decades, over a thousand QTL and GWAS studies have been published in the major cereal crops including sorghum, maize and rice. A large body of information has been generated on the genetic basis of quantitative traits, their genomic location, allelic effects and epistatic interactions. However, such QTL information has not been widely applied by cereal improvement programs and genetic researchers worldwide. In part this is due to the heterogeneous nature of QTL studies which leads QTL reliability variation from study to study. Using approaches to adjust the QTL confidence interval, this platform provides access to the most updated sorghum QTL information than any database available, spanning 23 years of research since 1995. The QTL database provides information on the predicted gene models underlying the QTL CI, across all sorghum genome assembly gene sets and maize and rice genome assemblies and also provides information on the diversity of the underlying genes and information on signatures of selection in sorghum. The resulting high-resolution, open-access research platform facilitates candidate gene identification across 3 cereal species, sorghum, maize and rice. Using a number of trait examples, we demonstrate the power and resolution of the resource to facilitate comparative genomics approaches to provide a bridge between genomics and applied breeding.


Asunto(s)
Productos Agrícolas/genética , Genómica/métodos , Sitios de Carácter Cuantitativo/genética , Sorghum/genética , Cromosomas de las Plantas/genética , Bases de Datos Genéticas , Carácter Cuantitativo Heredable
10.
Plant Biotechnol J ; 14(12): 2240-2253, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27155090

RESUMEN

Next-generation sequencing of complete genomes has given researchers unprecedented levels of information to study the multifaceted evolutionary changes that have shaped elite plant germplasm. In conjunction with population genetic analytical techniques and detailed online databases, we can more accurately capture the effects of domestication on entire biological pathways of agronomic importance. In this study, we explore the genetic diversity and signatures of selection in all predicted gene models of the storage starch synthesis pathway of Sorghum bicolor, utilizing a diversity panel containing lines categorized as either 'Landraces' or 'Wild and Weedy' genotypes. Amongst a total of 114 genes involved in starch synthesis, 71 had at least a single signal of purifying selection and 62 a signal of balancing selection and others a mix of both. This included key genes such as STARCH PHOSPHORYLASE 2 (SbPHO2, under balancing selection), PULLULANASE (SbPUL, under balancing selection) and ADP-glucose pyrophosphorylases (SHRUNKEN2, SbSH2 under purifying selection). Effectively, many genes within the primary starch synthesis pathway had a clear reduction in nucleotide diversity between the Landraces and wild and weedy lines indicating that the ancestral effects of domestication are still clearly identifiable. There was evidence of the positional rate variation within the well-characterized primary starch synthesis pathway of sorghum, particularly in the Landraces, whereby low evolutionary rates upstream and high rates downstream in the metabolic pathway were expected. This observation did not extend to the wild and weedy lines or the minor starch synthesis pathways.


Asunto(s)
Genoma de Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sorghum/genética , Sorghum/metabolismo , Almidón/metabolismo
11.
Zhong Yao Cai ; 39(5): 1019-23, 2016 May.
Artículo en Zh | MEDLINE | ID: mdl-30132636

RESUMEN

Objective: To explore the optimal storage method, antioxidant activities of fresh Cistanche deserticola fleshy stem were studied in response to the types of packaging and storage temperature during storage. Furthermore, this research will provide theoretical guides to preserve Cistanche deserticola fleshy stem. Methods: The fresh fleshy stem of Cistanche deserticola was stored at 4 ℃ and 25 ℃using polyethylene( PE) film, vacuum packaging and vacuum packaging with nitrogen( N2) respectively, and the antioxidant enzyme activities were assayed regularly. Results: The preservation temperature of Cistanche deserticola fleshy stem was better at 4 ℃ than that at25 ℃. Under 4 ℃ condition,vacuum packaging with N2 was conducive to maintaining antioxidant capacity. Conclusion: The combination of vacuum packaging with N2 and lower temperature can keep better quality in fresh Cistanche deserticola fleshy stem during storage.


Asunto(s)
Cistanche , Antioxidantes , Tallos de la Planta , Temperatura
12.
Imeta ; 3(2): e193, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38882488

RESUMEN

The assembly of two sorghum T2T genomes corrected the assembly errors in the current reference, uncovered centromere variation, boosted functional genomics research, and accelerated sorghum improvement.

13.
Plants (Basel) ; 13(3)2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38337903

RESUMEN

As one of the essential nutrients for plants, nitrogen (N) has a major impact on the yield and quality of wheat worldwide. Due to chemical fertilizer pollution, it has become increasingly important to improve crop yield by increasing N use efficiency (NUE). Therefore, understanding the response mechanisms to low N (LN) stress is essential for the regulation of NUE in wheat. In this study, LN stress significantly accelerated wheat root growth, but inhibited shoot growth. Further transcriptome analysis showed that 8468 differentially expressed genes (DEGs) responded to LN stress. The roots and shoots displayed opposite response patterns, of which the majority of DEGs in roots were up-regulated (66.15%; 2955/4467), but the majority of DEGs in shoots were down-regulated (71.62%; 3274/4565). GO and KEGG analyses showed that nitrate reductase activity, nitrate assimilation, and N metabolism were significantly enriched in both the roots and shoots. Transcription factor (TF) and protein kinase analysis showed that genes such as MYB-related (38/38 genes) may function in a tissue-specific manner to respond to LN stress. Moreover, 20 out of 107 N signaling homologous genes were differentially expressed in wheat. A total of 47 transcriptome datasets were used for weighted gene co-expression network analysis (17,840 genes), and five TFs were identified as the potential hub regulatory genes involved in the response to LN stress in wheat. Our findings provide insight into the functional mechanisms in response to LN stress and five candidate regulatory genes in wheat. These results will provide a basis for further research on promoting NUE in wheat.

14.
BMC Plant Biol ; 13: 162, 2013 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-24134222

RESUMEN

BACKGROUND: Sugarcane mosaic virus (SCMV) disease causes substantial losses of grain yield and forage biomass in susceptible maize cultivars. Maize resistance to SCMV is associated with two dominant genes, Scmv1 and Scmv2, which are located on the short arm of chromosome 6 and near the centromere region of chromosome 3, respectively. We combined both linkage and association mapping to identify positional candidate genes for Scmv1. RESULTS: Scmv1 was fine-mapped in a segregating population derived from near-isogenic lines and further validated and fine-mapped using two recombinant inbred line populations. The combined results assigned the Scmv1 locus to a 59.21-kb interval, and candidate genes within this region were predicted based on the publicly available B73 sequence. None of three predicted genes that are possibly involved in the disease resistance response are similar to receptor-like resistance genes. Candidate gene-based association mapping was conducted using a panel of 94 inbred lines with variable resistance to SCMV. A presence/absence variation (PAV) in the Scmv1 region and two polymorphic sites around the Zmtrx-h gene were significantly associated with SCMV resistance. CONCLUSION: Combined linkage and association mapping pinpoints Zmtrx-h as the most likely positional candidate gene for Scmv1. These results pave the way towards cloning of Scmv1 and facilitate marker-assisted selection for potyvirus resistance in maize.


Asunto(s)
Mapeo Cromosómico/métodos , Resistencia a la Enfermedad/genética , Estudios de Asociación Genética , Sitios Genéticos/genética , Virus del Mosaico/fisiología , Zea mays/genética , Zea mays/virología , Cruzamientos Genéticos , Genes de Plantas/genética , Ligamiento Genético , Marcadores Genéticos , Genética de Población , Endogamia , Desequilibrio de Ligamiento/genética , Repeticiones de Microsatélite/genética , Mapeo Físico de Cromosoma , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/virología , Reproducibilidad de los Resultados , Saccharum/virología
15.
BMC Plant Biol ; 13: 145, 2013 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-24079304

RESUMEN

BACKGROUND: Maize rough dwarf disease (MRDD) is a devastating viral disease that results in considerable yield losses worldwide. Three major strains of virus cause MRDD, including maize rough dwarf virus in Europe, Mal de Río Cuarto virus in South America, and rice black-streaked dwarf virus in East Asia. These viral pathogens belong to the genus fijivirus in the family Reoviridae. Resistance against MRDD is a complex trait that involves a number of quantitative trait loci (QTL). The primary approach used to minimize yield losses from these viruses is to breed and deploy resistant maize hybrids. RESULTS: Of the 50 heterogeneous inbred families (HIFs), 24 showed consistent responses to MRDD across different years and locations, in which 9 were resistant and 15 were susceptible. We performed trait-marker association analysis on the 24 HIFs and found six chromosomal regions which were putatively associated with MRDD resistance. We then conducted QTL analysis and detected a major resistance QTL, qMrdd1, on chromosome 8. By applying recombinant-derived progeny testing to self-pollinated backcrossed families, we fine-mapped the qMrdd1 locus into a 1.2-Mb region flanked by markers M103-4 and M105-3. The qMrdd1 locus acted in a recessive manner to reduce the disease-severity index (DSI) by 24.2-39.3%. The genetic effect of qMrdd1 was validated using another F6 recombinant inbred line (RIL) population in which MRDD resistance was segregating and two genotypes at the qMrdd1 locus differed significantly in DSI values. CONCLUSIONS: The qMrdd1 locus is a major resistance QTL, acting in a recessive manner to increase maize resistance to MRDD. We mapped qMrdd1 to a 1.2-Mb region, which will enable the introgression of qMrdd1-based resistance into elite maize hybrids and reduce MRDD-related crop losses.


Asunto(s)
Resistencia a la Enfermedad/genética , Sitios de Carácter Cuantitativo/genética , Zea mays/genética , Zea mays/virología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/virología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
16.
Trends Plant Sci ; 28(11): 1211-1213, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37580225

RESUMEN

Alkalinity constrains crop production. Recently, Zhang et al. reported a negative regulator, Alkaline Tolerance 1 (AT1), attenuating phosphorylation of plasma membrane intrinsic protein (PIP2) to block efflux of intracellular reactive oxygen species (ROS) under alkaline stress and boosting yield of cereal crops by 20-30%. However, further efforts are needed to exploit the application of AT1 in breeding alkaline-tolerant crops.

17.
Nat Plants ; 7(6): 766-773, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34017083

RESUMEN

Sorghum is a drought-tolerant staple crop for half a billion people in Africa and Asia, an important source of animal feed throughout the world and a biofuel feedstock of growing importance. Cultivated sorghum and its inter-fertile wild relatives constitute the primary gene pool for sorghum. Understanding and characterizing the diversity within this valuable resource is fundamental for its effective utilization in crop improvement. Here, we report analysis of a sorghum pan-genome to explore genetic diversity within the sorghum primary gene pool. We assembled 13 genomes representing cultivated sorghum and its wild relatives, and integrated them with 3 other published genomes to generate a pan-genome of 44,079 gene families with 222.6 Mb of new sequence identified. The pan-genome displays substantial gene-content variation, with 64% of gene families showing presence/absence variation among genomes. Comparisons between core genes and dispensable genes suggest that dispensable genes are important for sorghum adaptation. Extensive genetic variation was uncovered within the pan-genome, and the distribution of these variations was influenced by variation of recombination rate and transposable element content across the genome. We identified presence/absence variants that were under selection during sorghum domestication and improvement, and demonstrated that such variation had important phenotypic outcomes that could contribute to crop improvement. The constructed sorghum pan-genome represents an important resource for sorghum improvement and gene discovery.


Asunto(s)
Productos Agrícolas/genética , Variación Genética , Genoma de Planta , Proteínas de Plantas/genética , Sorghum/genética , Domesticación , Tamaño del Genoma , Familia de Multigenes , Filogenia , Pigmentación/genética , Polimorfismo de Nucleótido Simple , Semillas/genética
18.
Genes (Basel) ; 11(7)2020 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-32708598

RESUMEN

C4 photosynthesis has evolved in over 60 different plant taxa and is an excellent example of convergent evolution. Plants using the C4 photosynthetic pathway have an efficiency advantage, particularly in hot and dry environments. They account for 23% of global primary production and include some of our most productive cereals. While previous genetic studies comparing phylogenetically related C3 and C4 species have elucidated the genetic diversity underpinning the C4 photosynthetic pathway, no previous studies have described the genetic diversity of the genes involved in this pathway within a C4 crop species. Enhanced understanding of the allelic diversity and selection signatures of genes in this pathway may present opportunities to improve photosynthetic efficiency, and ultimately yield, by exploiting natural variation. Here, we present the first genetic diversity survey of 8 known C4 gene families in an important C4 crop, Sorghum bicolor (L.) Moench, using sequence data of 48 genotypes covering wild and domesticated sorghum accessions. Average nucleotide diversity of C4 gene families varied more than 20-fold from the NADP-malate dehydrogenase (MDH) gene family (θπ = 0.2 × 10-3) to the pyruvate orthophosphate dikinase (PPDK) gene family (θπ = 5.21 × 10-3). Genetic diversity of C4 genes was reduced by 22.43% in cultivated sorghum compared to wild and weedy sorghum, indicating that the group of wild and weedy sorghum may constitute an untapped reservoir for alleles related to the C4 photosynthetic pathway. A SNP-level analysis identified purifying selection signals on C4 PPDK and carbonic anhydrase (CA) genes, and balancing selection signals on C4 PPDK-regulatory protein (RP) and phosphoenolpyruvate carboxylase (PEPC) genes. Allelic distribution of these C4 genes was consistent with selection signals detected. A better understanding of the genetic diversity of C4 pathway in sorghum paves the way for mining the natural allelic variation for the improvement of photosynthesis.


Asunto(s)
Variación Genética , Redes y Vías Metabólicas/genética , Fotosíntesis/genética , Sorghum/genética , Domesticación , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Genoma de Planta , Malato-Deshidrogenasa (NADP+)/genética , Malato-Deshidrogenasa (NADP+)/metabolismo , Familia de Multigenes/genética , Fosfoenolpiruvato Carboxilasa/genética , Fosfoenolpiruvato Carboxilasa/metabolismo , Polimorfismo de Nucleótido Simple , Piruvato Ortofosfato Diquinasa/genética , Piruvato Ortofosfato Diquinasa/metabolismo , Sorghum/clasificación
19.
Nat Commun ; 11(1): 495, 2020 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-31980630

RESUMEN

Maize rough dwarf disease (MRDD), caused by various species of the genus Fijivirus, threatens maize production worldwide. We previously identified a quantitative locus qMrdd1 conferring recessive resistance to one causal species, rice black-streaked dwarf virus (RBSDV). Here, we show that Rab GDP dissociation inhibitor alpha (RabGDIα) is the host susceptibility factor for RBSDV. The viral P7-1 protein binds tightly to the exon-10 and C-terminal regions of RabGDIα to recruit it for viral infection. Insertion of a helitron transposon into RabGDIα intron 10 creates alternative splicing to replace the wild-type exon 10 with a helitron-derived exon 10. The resultant splicing variant RabGDIα-hel has difficulty being recruited by P7-1, thus leading to quantitative recessive resistance to MRDD. All naturally occurring resistance alleles may have arisen from a recent single helitron insertion event. These resistance alleles are valuable to improve maize resistance to MRDD and potentially to engineer RBSDV resistance in other crops.


Asunto(s)
Resistencia a la Enfermedad , Inhibidores de Disociación de Guanina Nucleótido/metabolismo , Enfermedades de las Plantas/virología , Proteínas de Plantas/metabolismo , Virus de Plantas/fisiología , Zea mays/virología , Alelos , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Inhibidores de Disociación de Guanina Nucleótido/genética , Modelos Biológicos , Mapeo Físico de Cromosoma , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Unión Proteica , Sitios de Carácter Cuantitativo/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reproducibilidad de los Resultados , Proteínas Virales/metabolismo , Zea mays/genética , Zea mays/ultraestructura
20.
Trends Plant Sci ; 24(12): 1072-1074, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31648939

RESUMEN

The inadequacy of a single reference genome to capture the full landscape of genetic diversity within a species constrains exploration of genetic variation for crop improvement. A recent study by Yang et al. has demonstrated the value of multiple reference-quality genomes in capturing structural variants and guiding biological discovery.


Asunto(s)
Genoma de Planta , Zea mays , Productos Agrícolas/genética , Variación Genética , Genómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA