Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 418
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
EMBO Rep ; 25(5): 2375-2390, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38594391

RESUMEN

Cancer patients undergoing treatment with antineoplastic drugs often experience chemotherapy-induced neuropathic pain (CINP), and the therapeutic options for managing CINP are limited. Here, we show that systemic paclitaxel administration upregulates the expression of neurotrophin-3 (Nt3) mRNA and NT3 protein in the neurons of dorsal root ganglia (DRG), but not in the spinal cord. Blocking NT3 upregulation attenuates paclitaxel-induced mechanical, heat, and cold nociceptive hypersensitivities and spontaneous pain without altering acute pain and locomotor activity in male and female mice. Conversely, mimicking this increase produces enhanced responses to mechanical, heat, and cold stimuli and spontaneous pain in naive male and female mice. Mechanistically, NT3 triggers tropomyosin receptor kinase C (TrkC) activation and participates in the paclitaxel-induced increases of C-C chemokine ligand 2 (Ccl2) mRNA and CCL2 protein in the DRG. Given that CCL2 is an endogenous initiator of CINP and that Nt3 mRNA co-expresses with TrkC and Ccl2 mRNAs in DRG neurons, NT3 likely contributes to CINP through TrkC-mediated activation of the Ccl2 gene in DRG neurons. NT3 may be thus a potential target for CINP treatment.


Asunto(s)
Quimiocina CCL2 , Ganglios Espinales , Neuralgia , Neuronas , Neurotrofina 3 , Paclitaxel , Receptor trkC , Animales , Femenino , Masculino , Ratones , Antineoplásicos/efectos adversos , Quimiocina CCL2/metabolismo , Quimiocina CCL2/genética , Ganglios Espinales/metabolismo , Ganglios Espinales/efectos de los fármacos , Neuralgia/inducido químicamente , Neuralgia/metabolismo , Neuralgia/genética , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Neurotrofina 3/metabolismo , Neurotrofina 3/genética , Paclitaxel/efectos adversos , Paclitaxel/farmacología , Receptor trkC/metabolismo , Receptor trkC/genética , ARN Mensajero/metabolismo , ARN Mensajero/genética , Factores de Crecimiento Nervioso/genética , Factores de Crecimiento Nervioso/metabolismo
2.
J Neurosci ; 43(7): 1267-1278, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36627209

RESUMEN

Dysregulation of pain-associated genes in the dorsal root ganglion (DRG) is considered to be a molecular basis of neuropathic pain genesis. Fused in sarcoma (FUS), a DNA/RNA-binding protein, is a critical regulator of gene expression. However, whether it contributes to neuropathic pain is unknown. This study showed that peripheral nerve injury caused by the fourth lumbar (L4) spinal nerve ligation (SNL) or chronic constriction injury (CCI) of the sciatic nerve produced a marked increase in the expression of FUS protein in injured DRG neurons. Blocking this increase through microinjection of the adeno-associated virus (AAV) 5-expressing Fus shRNA into the ipsilateral L4 DRG mitigated the SNL-induced nociceptive hypersensitivities in both male and female mice. This microinjection also alleviated the SNL-induced increases in the levels of phosphorylated extracellular signal-regulated kinase 1/2 (p-ERK1/2) and glial fibrillary acidic protein (GFAP) in the ipsilateral L4 dorsal horn. Furthermore, mimicking this increase through microinjection of AAV5 expressing full-length Fus mRNA into unilateral L3/4 DRGs produced the elevations in the levels of p-ERK1/2 and GFAP in the dorsal horn, enhanced responses to mechanical, heat and cold stimuli, and induced the spontaneous pain on the ipsilateral side of both male and female mice in the absence of SNL. Mechanistically, the increased FUS activated the NF-κB signaling pathway by promoting the translocation of p65 into the nucleus and phosphorylation of p65 in the nucleus from injured DRG neurons. Our results indicate that DRG FUS contributes to neuropathic pain likely through the activation of NF-κB in primary sensory neurons.SIGNIFICANCE STATEMENT In the present study, we reported that fused in sarcoma (FUS), a DNA/RNA-binding protein, is upregulated in injured dorsal root ganglion (DRG) following peripheral nerve injury. This upregulation is responsible for nerve injury-induced translocation of p65 into the nucleus and phosphorylation of p65 in the nucleus from injured DRG neurons. Because blocking this upregulation alleviates nerve injury-induced nociceptive hypersensitivity, DRG FUS participates in neuropathic pain likely through the activation of NF-κB in primary sensory neurons. FUS may be a potential target for neuropathic pain management.


Asunto(s)
Neuralgia , Traumatismos de los Nervios Periféricos , Sarcoma , Femenino , Ratas , Ratones , Masculino , Animales , FN-kappa B/metabolismo , Ratas Sprague-Dawley , Traumatismos de los Nervios Periféricos/complicaciones , Traumatismos de los Nervios Periféricos/metabolismo , Hiperalgesia/metabolismo , Nocicepción , Neuralgia/metabolismo , Células Receptoras Sensoriales/metabolismo , Sarcoma/complicaciones , Sarcoma/metabolismo , ADN/metabolismo , Ganglios Espinales/metabolismo
3.
J Cogn Neurosci ; 36(6): 1071-1098, 2024 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-38527084

RESUMEN

We examined the initial stages of orthographic learning in real time as literate adults learned spellings for spoken pseudowords during fMRI scanning. Participants were required to learn and store orthographic word forms because the pseudoword spellings were not uniquely predictable from sound to letter mappings. With eight learning trials per word form, we observed changes in the brain's response as learning was taking place. Accuracy was evaluated during learning, immediately after scanning, and 1 week later. We found evidence of two distinct learning systems-hippocampal and neocortical-operating during orthographic learning, consistent with the predictions of dual systems theories of learning/memory such as the complementary learning systems framework [McClelland, J. L., McNaughton, B. L., & O'Reilly, R. C. Why there are complementary learning systems in the hippocampus and neocortex: Insights from the successes and failures of connectionist models of learning and memory. Psychological Review, 102, 419-457, 1995]. The bilateral hippocampus and the visual word form area (VWFA) showed significant BOLD response changes over learning, with the former exhibiting a rising pattern and the latter exhibiting a falling pattern. Moreover, greater BOLD signal increase in the hippocampus was associated with better postscan recall. In addition, we identified two distinct bilateral brain networks that mirrored the rising and falling patterns of the hippocampus and VWFA. Functional connectivity analysis revealed that regions within each network were internally synchronized. These novel findings highlight, for the first time, the relevance of multiple learning systems in orthographic learning and provide a paradigm that can be used to address critical gaps in our understanding of the neural bases of orthographic learning in general and orthographic word-form learning specifically.


Asunto(s)
Mapeo Encefálico , Imagen por Resonancia Magnética , Humanos , Masculino , Femenino , Adulto Joven , Adulto , Aprendizaje/fisiología , Lectura , Aprendizaje Verbal/fisiología , Oxígeno/sangre , Hipocampo/fisiología , Hipocampo/diagnóstico por imagen , Corteza Cerebral/fisiología , Corteza Cerebral/diagnóstico por imagen , Reconocimiento Visual de Modelos/fisiología
4.
J Am Chem Soc ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39018421

RESUMEN

When catalytic reactions are interfered with by radiation sources, thorium clusters are promising as potential catalysts due to their superior radiation resistance. However, there is currently very little research on the design synthesis and catalytic application of radiation-stable thorium clusters. In this work, we have elaborately engineered and fabricated three high-nuclear thorium cluster catalysts denoted as Th12L3-MA12, Th12L3-MA6-BF6, and Th12L3-Fcc12, which did not undergo any significant alterations in their molecular structures and compositions after irradiation with 690 kGy γ-rays. We systematically investigated the photocatalytic/thermocatalytic properties of these radiation-resistant thorium clusters for the first time and found that γ-rays could not alter their catalytic activities. In addition, it was found that ligand engineering could modulate the catalytic activity of thorium clusters, thus expanding the range of catalytic applications of thorium clusters, including reduction reactions (nitroarene reduction) and some oxidation reactions (N-heterocyclic oxidative dehydrogenation and diphenylmethane oxidation). Meanwhile, all of these organic transformation reactions achieved a >80% conversion and nearly 100% product selectivity. Radiation experiments combined with DFT calculations showed that the synergistic catalysis of thorium-oxo core and ligands led to the generation of specific active species (H+, O2•-, or tBuO/tBuOO•) and activation of substrate molecules, thus achieving superior catalytic performance. This work is not only the first to develop radiation-resistant thorium cluster catalysts to perform efficient redox reactions but also provides design ideas for the construction of high-nuclearity thorium clusters under mild conditions.

5.
J Neuroinflammation ; 21(1): 99, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38632655

RESUMEN

BACKGROUND: The pathogenesis of memory impairment, a common complication of chronic neuropathic pain (CNP), has not been fully elucidated. Schwann cell (SC)-derived extracellular vesicles (EVs) contribute to remote organ injury. Here, we showed that SC-EVs may mediate pathological communication between SCs and hippocampal neurons in the context of CNP. METHODS: We used an adeno-associated virus harboring the SC-specific promoter Mpz and expressing the CD63-GFP gene to track SC-EVs transport. microRNA (miRNA) expression profiles of EVs and gain-of-function and loss-of-function regulatory experiments revealed that miR-142-5p was the main cargo of SC-EVs. Next, luciferase reporter gene and phenotyping experiments confirmed the direct targets of miR-142-5p. RESULTS: The contents and granule sizes of plasma EVs were significantly greater in rats with chronic sciatic nerve constriction injury (CCI)than in sham rats. Administration of the EV biogenesis inhibitor GW4869 ameliorated memory impairment in CCI rats and reversed CCI-associated dendritic spine damage. Notably, during CCI stress, SC-EVs could be transferred into the brain through the circulation and accumulate in the hippocampal CA1-CA3 regions. miR-142-5p was the main cargo wrapped in SC-EVs and mediated the development of CCI-associated memory impairment. Furthermore, α-actinin-4 (ACTN4), ELAV-like protein 4 (ELAVL4) and ubiquitin-specific peptidase 9 X-linked (USP9X) were demonstrated to be important downstream target genes for miR-142-5p-mediated regulation of dendritic spine damage in hippocampal neurons from CCI rats. CONCLUSION: Together, these findings suggest that SCs-EVs and/or their cargo miR-142-5p may be potential therapeutic targets for memory impairment associated with CNP.


Asunto(s)
Vesículas Extracelulares , MicroARNs , Neuralgia , Ratas , Animales , MicroARNs/metabolismo , Neuralgia/metabolismo , Neuronas/metabolismo , Células de Schwann/metabolismo , Vesículas Extracelulares/metabolismo
6.
Small ; 20(11): e2305982, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37926794

RESUMEN

Porous carbon is widely used in energy storage-conversion systems, and the question of how to explore an efficient strategy for preparation is very significant. Herein, the flame retardant capability of (NH4 )2 SO4 /Mg(OH)2 that contains gas phase-heat absorption-condensate phase components is assisted to carbonize coal tar pitch in air and obtain the porous carbon. The mechanism of stepwise inflaming retarding is systematically investigated. In the carbonization process in a muffle furnace, (NH4 )2 SO4 decomposes releasing gases at below 400 °C to act as the role of gas phase flame retardant. Mg(OH)2 starts to decompose at ≥ 400 °C, and it has the effect of heat absorption and condensed phase flame retardation (MgSO4 and MgO). What's more, the flame retardant also serves as an N, S source and template. The obtained porous carbon possesses an ultrahigh carbon yield of 56.9 wt.%, hierarchical pore structure, and multi-heteroatoms doping. It can still reach up to 244.7 F g-1 even loaded 20 mg of active material. In addition, the (NH4 )2 SO4 /agar gel electrolyte is synthesized, and the fabricated flexible ammonium ion capacitor exhibits a superior energy density of 40.8 Wh kg-1 . This work uncovers a new way to construct porous carbon, which is expected to synthesize more carbon materials using other carbon sources.

7.
Appl Environ Microbiol ; : e0071724, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39016615

RESUMEN

Mechanistic investigations are of paramount importance in elucidating the modes of action of antibiotics and facilitating the discovery of novel drugs. We reported a luciferase-based reporter system using bacterial cells to unveil mechanisms of antimicrobials targeting transcription and translation. The reporter gene Nluc encoding NanoLuciferase (NanoLuc) was integrated into the genome of the Gram-positive model organism, Bacillus subtilis, to generate a reporter strain BS2019. Cellular transcription and translation levels were assessed by quantifying the amount of Nluc mRNA as well as the luminescence catalyzed by the enzyme NanoLuc. We validated this system using three known inhibitors of transcription (rifampicin), translation (chloramphenicol), and cell wall synthesis (ampicillin). The B. subtilis reporter strain BS2019 successfully revealed a decline in Nluc expression by rifampicin and NanoLuc enzyme activity by chloramphenicol, while ampicillin produced no observable effect. The assay was employed to characterize a previously discovered bacterial transcription inhibitor, CUHK242, with known antimicrobial activity against drug-resistant Staphylococcus aureus. Production of Nluc mRNA in our reporter BS2019 was suppressed in the presence of CUHK242, demonstrating the usefulness of the construct, which provides a simple way to study the mechanism of potential antibiotic candidates at early stages of drug discovery. The reporter system can also be modified by adopting different promoters and reporter genes to extend its scope of contribution to other fields of work. IMPORTANCE: Discovering new classes of antibiotics is desperately needed to combat the emergence of multidrug-resistant pathogens. To facilitate the drug discovery process, a simple cell-based assay for mechanistic studies is essential to characterize antimicrobial candidates. In this work, we developed a luciferase-based reporter system to quantify the transcriptional and translational effects of potential compounds and validated our system using two currently marketed drugs. Reporter strains generated in this study provide readily available means for identifying bacterial transcription inhibitors as prospective novel antibacterials. We also provided a series of plasmids for characterizing promoters under various conditions such as stress.

8.
Opt Express ; 32(9): 14940-14952, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38859157

RESUMEN

We theoretically report that high-order sideband generation (HSG) from Floquet matters driven by a strong terahertz light while engineered by weak infrared light can achieve multiple plateau HSG. The Floquet-engineering systems exhibit distinctive spectroscopic characteristics that go beyond the HSG processes in field-free band-structure systems. The spatial-temporal dynamics analyses under Floquet-Bloch and time-reversal-symmetry theories clarify the spectra and its odd-even characteristics in the HSG spectrum. Our work demonstrates the HSG of Floquet matters via Floquet engineering and indicates a promising way to extract Floquet material parameters in future experiments.

9.
Scand J Gastroenterol ; 59(4): 445-455, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38053282

RESUMEN

BACKGROUND: Accompanied by the growing prevalence of nonalcoholic fatty liver disease (NAFLD), the coexistence of chronic hepatitis B (CHB) and NAFLD has increased. In the context of CHB, there is limited understanding of the factors that influence the development of NASH. METHODS: We enrolled CHB combined NAFLD patients who had liver biopsy and divided them to NASH vs. non-NASH groups. A whole transcriptome chip was used to examine the expression profiles of long noncoding RNAs (lncRNAs) and mRNA in biopsied liver tissues. The function analysis of HIGD1A were performed. We knocked down or overexpressed HIGD1A in HepG2.2.15 cells by transient transfection of siRNA-HIGD1A or pcDNA-HIGD1A. In vivo investigations were conducted using hepatitis B virus (HBV) transgenic mice. RESULTS: In 65 patients with CHB and NAFLD, 28 were patients with NASH, and 37 were those without NASH. After screening 582 differentially expressed mRNAs, GO analysis revealed differentially expressed mRNAs acting on nicotinamide adenine dinucleotide phosphate (NADPH), which influenced redox enzyme activity. KEGG analysis also shown that they were involved in the NAFLD signaling pathway. The function analysis revealed that HIGD1A was associated with the mitochondrion. Then, both in vivo and in vitro CHB model, HIGD1A was significantly higher in the NASH group than in the non-NASH group. HIGD1A knockdown impaired mitochondrial transmembrane potential and induced cell apoptosis in HepG2.2.15 cells added oleic acid and palmitate. On the contrary, hepatic HIGD1A overexpression ameliorated free fatty acids-induced apoptosis and oxidative stress. Furthermore, HIGD1A reduced reactive oxygen species (ROS) level by increasing glutathione (GSH) expression, but Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK)/Acetyl-CoA carboxylase (ACC) pathway was not involved. CONCLUSION: Both in vivo and in vitro CHB model, an upward trend of HIGD1A was observed in the NASH-related inflammatory response. HIGDIA played a protective role in cells against oxidative stress. Our data suggested that HIGD1A may be a positive regulator of NASH within the CHB context.


Asunto(s)
Hepatitis B Crónica , Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Humanos , Enfermedad del Hígado Graso no Alcohólico/patología , Hepatitis B Crónica/complicaciones , Hígado/patología , Virus de la Hepatitis B/genética , Especies Reactivas de Oxígeno/metabolismo
10.
Inorg Chem ; 63(8): 3859-3869, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38335061

RESUMEN

During the PUREX process, the separation between U(VI) and Pu(IV) is achieved by reducing Pu(IV) to Pu(III), which is complicated and energy-consuming. To address this issue, we report here the first case of separation of U(VI) from Pu(IV) by o-phenanthroline diamide ligands under high acidity. Two new o-phenanthroline diamide ligands (1,10-phenanthroline-2,9-diyl)bis(indolin-1-ylmethanone) (L1) and (1,10-phenanthroline-2,9-diyl)bis((2-methylindolin-1-yl)methanone) (L2) were synthesized, which can effectively separate U(VI) from Pu(IV) even at 4 mol/L HNO3. The highest separation factor of U(VI) and Pu(IV) can reach over 1000, setting a new record for the separation of U(VI) from Pu(IV) under high acidity. Furthermore, extracted U(VI) can be easily recovered with water or dilute nitric acid, and the extraction performance remains stable even after 150 kGy gamma irradiation, which provides solid experimental support for potential engineering applications. The results of UV-vis titration and single-crystal X-ray diffraction measurements show that the 1:1 complex formed by L1 with U(VI) is more stable than all of the previously reported phenanthroline ligands, which reasonably reveals that the ligand L1 designed in this work has excellent affinity for U(VI). The findings of this work promise to contribute to the facilitation of the PUREX process by avoiding the use of reducing agents. It also provides new clues for designing ligands to achieve efficient separation between U(VI) and Pu(IV) at high acidity.

11.
Brain ; 146(9): 3866-3884, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37012681

RESUMEN

Nerve injury to peripheral somatosensory system causes refractory neuropathic pain. Maladaptive changes of gene expression in primary sensory neurons are considered molecular basis of this disorder. Long non-coding RNAs (lncRNAs) are key regulators of gene transcription; however, their significance in neuropathic pain remains largely elusive.Here, we reported a novel lncRNA, named sensory neuron-specific lncRNA (SS-lncRNA), for its expression exclusively in dorsal root ganglion (DRG) and trigeminal ganglion. SS-lncRNA was predominantly expressed in small DRG neurons and significantly downregulated due to a reduction of early B cell transcription factor 1 in injured DRG after nerve injury. Rescuing this downregulation reversed a decrease of the calcium-activated potassium channel subfamily N member 1 (KCNN1) in injured DRG and alleviated nerve injury-induced nociceptive hypersensitivity. Conversely, DRG downregulation of SS-lncRNA reduced the expression of KCNN1, decreased total potassium currents and afterhyperpolarization currents and increased excitability in DRG neurons and produced neuropathic pain symptoms.Mechanistically, downregulated SS-lncRNA resulted in the reductions of its binding to Kcnn1 promoter and heterogeneous nuclear ribonucleoprotein M (hnRNPM), consequent recruitment of less hnRNPM to the Kcnn1 promoter and silence of Kcnn1 gene transcription in injured DRG.These findings indicate that SS-lncRNA may relieve neuropathic pain through hnRNPM-mediated KCNN1 rescue in injured DRG and offer a novel therapeutic strategy specific for this disorder.


Asunto(s)
Neuralgia , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , Células Receptoras Sensoriales/metabolismo , Neuralgia/terapia , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/genética
12.
Skin Res Technol ; 30(2): e13626, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38385847

RESUMEN

BACKGROUND: The complex network connections, information transmission and organization play key roles in brain cognition on sensory stimulation. Previous studies showed that several brain regions of somatosensory, motor, emotional, cognitive, etc. are linked to fabric-evoked prickle. But the functional connectivity characteristics of the brain network involved in prickle perception is still unclear. MATERIALS AND METHODS: In the present study, resting state fMRI (functional magnetic resonance imaging) with functional connectivity analysis was adopted to build the initial brain functional network, and task fMRI with psychophysiological interaction analysis was employed to investigate modulation features of prickling task to functional connections in the brain network. RESULTS: The results showed that, in resting state, six groups or sub-networks can be identified in the prickle network, and when the subjects performed the prickling task, functional connectivity strength between some seed regions (e.g., somatosensory regions and precuneus, emotional regions and the prefrontal cortex, etc.) in the network increased. CONCLUSION: Combining resting-state fMRI with task fMRI is a feasible and promising method to study functional connectivity characteristics of the brain network involved in prickle perception. It is inferred that the "itch" ingredient of prickle sensation was transmitted from somatosensory cortices to precuneus, and emotional attribute (e.g., pain) from somatosensory cortices to the prefrontal cortex and at last to emotional regions.


Asunto(s)
Encéfalo , Emociones , Humanos , Encéfalo/diagnóstico por imagen , Cognición , Dolor , Percepción
13.
Gynecol Endocrinol ; 40(1): 2352136, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38733359

RESUMEN

OBJECTIVE: This study aimed to investigate the impact of serum androgen levels on metabolic profiles in patients with polycystic ovary syndrome (PCOS). METHODS: We included 216 patients with PCOS and 216 healthy individuals selected as the control group. According to the measured serum androgen levels, patients with PCOS were divided into the hyperandrogenism group and non-hyperandrogenism group. Clinical metabolic indicators were assessed and compared between the two groups. Additionally, we assessed the correlation between androgen levels and clinical metabolic indicators. RESULTS: The body mass index, waist-to-hip ratio, mF-G score, and acne score, as well as T, LH, LSH/FSH, FPG, Cr, UA, TG, TC, and LDL-C levels were significantly higher in the PCOS group than in the control group. The incidence of hyperandrogenism and clinical hyperandrogenism in the PCOS group was significantly higher than that in the control group. Regarding clinical hyperandrogenism, hirsutism, acne, and acanthosis nigricans were significantly more common in the PCOS group than in the control group. Serum androgen levels were significantly correlated with the mF-G score, acne score, FSH, glucose concentration at 30 min, glucose concentration at 60 min, glucose concentration at 120 min, FINS, N120, HOMA-IR, HbA1c, AUCG, UA, TG, and hHDL-Clevels. CONCLUSION: Elevated serum androgen levels are commonly observed in patients with PCOS and are associated with multiple metabolic abnormalities. Therefore, it is recommended to regularly monitor glucose and lipid metabolism-related indicators in patients with PCOS who have elevated androgen levels.


Asunto(s)
Andrógenos , Hiperandrogenismo , Síndrome del Ovario Poliquístico , Humanos , Síndrome del Ovario Poliquístico/sangre , Síndrome del Ovario Poliquístico/metabolismo , Femenino , Adulto , Hiperandrogenismo/sangre , Andrógenos/sangre , Adulto Joven , Estudios de Casos y Controles , Índice de Masa Corporal , Metaboloma/fisiología , Acné Vulgar/sangre , Resistencia a la Insulina/fisiología
14.
J Mater Sci Mater Med ; 35(1): 16, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38489121

RESUMEN

Treatment of bone defects remains crucial challenge for successful bone healing, which arouses great interests in designing and fabricating ideal biomaterials. In this regard, the present study focuses on developing a novel fluffy scaffold of poly Lactide-co-glycolide (PLGA) composites with hydroxyapatite (HA) scaffold used in bone defect repair in rabbits. This fluffy PLGA/HA composite scaffold was fabricated by using multi-electro-spinning combined with biomineralization technology. In vitro analysis of human bone marrow mesenchymal stem cells (BMSCs) seeded onto fluffy PLGA/HA composite scaffold showed their ability to adhere, proliferate and cell viability. Transplant of fluffy PLGA/HA composite scaffold in a rabbit model showed a significant increase in mineralized tissue production compared to conventional and fluffy PLGA/HA composite scaffold. These findings are promising for fluffy PLGA/HA composite scaffolds used in bone defects.


Asunto(s)
Durapatita , Andamios del Tejido , Animales , Humanos , Conejos , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Materiales Biocompatibles , Biomineralización , Osteogénesis
15.
Nano Lett ; 23(23): 10710-10718, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38010943

RESUMEN

Three-dimensional (3D) hanging drop cell culture is widely used in organoid culture because of its lack of selection pressure and rapid cell aggregation. However, current hanging drop technology has limitations, such as a dependence on complex microfluidic transport channels or specific capillary force templates for drop formation, which leads to unchangeable drop features. These methods also hinder live imaging because of space and complexity constraints. Here, we have developed a hanging drop construction method and created a flexible 3D hanging drop construction platform composed of a manipulation module and an adhesion module. Their harmonious operation allows for the easy construction of hanging drops of varying sizes, types, and patterns. Our platform produces a cell hanging drop chip with small sizes and clear fields of view, thereby making it compatible with live imaging. This platform has great potential for personalized medicine, cancer and drug discovery, tissue engineering, and stem cell research.


Asunto(s)
Técnicas de Cultivo de Célula , Microfluídica , Técnicas de Cultivo de Célula/métodos , Microfluídica/métodos , Ingeniería de Tejidos/métodos , Diagnóstico por Imagen
16.
J Am Chem Soc ; 145(16): 8860-8870, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37070784

RESUMEN

The selective photoisomerization or photocyclization of stilbene to achieve value upgrade is of great significance in industry applications, yet it remains a challenge to accomplish both of them through a one-pot photocatalysis strategy under mild conditions. Here, a sevenfold interpenetrating 3D covalent organic framework (TPDT-COF) has been synthesized through covalent coupling between N,N,N,N-tetrakis(4-aminophenyl)-1,4-benzenediamine (light absorption and free radical generation) and 5,5'-(2,1,3-benzothiadiazole-4,7-diyl)bis[2-thiophenecarboxaldehyde] (catalytic center). The thus-obtained sevenfold interpenetrating structure presents a functional pore channel with a tunable photocatalytic ability and specific pore confinement effect that can be applied for selective stilbene photoisomerization and photocyclization. Noteworthily, it enables photogeneration of cis-stilbene or phenanthrene with >99% selectivity by simply changing the gas atmosphere under mild conditions (Ar, SeleCis. > 99%, SelePhen. < 1% and O2, SeleCis. < 1%, and SelePhen. > 99%). Theoretical calculations prove that different gas atmospheres possess varying influences on the energy barriers of reaction intermediates, and the pore confinement effect plays a synergistically catalytic role, thus inducing different product generation. This study might facilitate the exploration of porous crystalline materials in selective photoisomerization and photocyclization.

17.
J Am Chem Soc ; 145(42): 23167-23175, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37820308

RESUMEN

The precise tuning of components, spatial orientations, or connection modes for redox units is vital for gaining deep insight into efficient artificial photosynthetic overall reaction, yet it is still hard achieve for heterojunction photocatalysts. Here, we have developed a series of redox molecular junction covalent organic frameworks (COFs) (M-TTCOF-Zn, M = Bi, Tri, and Tetra) for artificial photosynthetic overall reaction. The covalent connection between TAPP-Zn and multidentate TTF endows various connection modes between water photo-oxidation (multidentate TTF) and CO2 photoreduction (TAPP-Zn) centers that can serve as desired platforms to study the possible interactions between redox centers. Notably, Bi-TTCOF-Zn exhibits a high CO production rate of 11.56 µmol g-1 h-1 (selectivity, ∼100%), which is more than 2 and 6 times higher than those of Tri-TTCOF-Zn and Tetra-TTCOF-Zn, respectively. As revealed by theoretical calculations, Bi-TTCOF-Zn facilitates a more uniform distribution of energy-level orbitals, faster charge transfer, and stronger *OH adsorption/stabilization ability than those of Tri-TTCOF-Zn and Tetra-TTCOF-Zn.

18.
Neurobiol Dis ; 182: 106155, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37182721

RESUMEN

Neuropathic pain, a severe clinical symptom, significantly affects the quality of life in the patients. The molecular mechanisms underlying neuropathic pain have been the focus of research in recent decades; however, the neuronal circuit-mediated mechanisms associated with this disorder remain poorly understood. Here, we report that a projection from the lateral hypothalamus (LH) glutamatergic neurons to the lateral habenula (LHb), an excitatory LH-LHb neuronal circuit, participates in nerve injury-induced nociceptive hypersensitivity. LH glutamatergic neurons are activated and display enhanced responses to normally non-noxious stimuli following chronic constriction injury. Chemogenetic inhibition of LH glutamatergic neurons or excitatory LH-LHb circuit blocked CCI-induced nociceptive hypersensitivity. Activation of the LH-LHb circuit led to augmented responses to mechanical and thermal stimuli in mice without nerve injury. These findings suggest that LH neurons and their triggered LH-LHb circuit participate in central mechanisms underlying neuropathic pain and may be targets for the treatment of this disorder.


Asunto(s)
Habénula , Neuralgia , Ratones , Animales , Área Hipotalámica Lateral , Calidad de Vida , Hipotálamo/fisiología , Neuralgia/etiología
19.
J Med Virol ; 95(1): e28327, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36415105

RESUMEN

Quinolin-2-one represents an important and valuable chemical motif that possesses a wide variety of biological activities; however, the anti-influenza activities of quinolin-2-one-containing compounds were rarely reported. Herein, we describe the screening and identification of 3-aryl-quinolin-2-one derivatives as a novel class of antiviral agents. The 3-aryl-quinolinone derivatives were synthesized via an efficient copper-catalyzed reaction cascade that we previously developed. Using this synthetic method, preliminary structure-activity relationships of this scaffold against the influenza A virus infection were systematically explored. The most potent compound 34 displayed IC50 values of 2.14 and 4.88 µM against the replication of H3N2 (A/HK/8/68) and H1N1 (A/WSN/33) strains, respectively, without apparent cytotoxicity on MDCK cells. We further demonstrated that 27 and 34 potently inhibited the plaque formation of the IAV, rendering this scaffold attractive for pursuing novel anti-influenza agents.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Virus de la Influenza A , Gripe Humana , Animales , Perros , Humanos , Antivirales/uso terapéutico , Subtipo H3N2 del Virus de la Influenza A , Gripe Humana/tratamiento farmacológico , Células de Riñón Canino Madin Darby
20.
Med Microbiol Immunol ; 212(1): 53-63, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36367554

RESUMEN

It has been reported that IL-33 receptor ST2 deficiency mitigates Cryptococcus neoformans (C. neoformans) pulmonary infection in BALB/c mice. IL-33 may modulate immune responses in ST2-dependent and ST2-independent manners. The host genetic background (i.e., BALB/c, C57BL/6 J) influences immune responses against C. neoformans. In the present study, we aimed to explore the roles of IL-33 and ST2 in pulmonary C. neoformans-infected mice on a C57BL/6 J genetic background. C. neoformans infection increased IL-33 expression in lung tissues. IL-33 deficiency but not ST2 deficiency significantly extended the survival time of C. neoformans-infected mice. In contrast, either IL-33 or ST2 deficiency reduced fungal burdens in lung, spleen and brain tissues from the mice following C. neoformans intratracheal inoculation. Similarly, inflammatory responses in the lung tissues were more pronounced in both the IL-33-/- and ST2-/- infected mice. However, mucus production was decreased in IL-33-/- infected mice alone, and the level of IL-5 in bronchoalveolar lavage fluid (BALF) was substantially decreased in the IL-33-/- infected mice but not ST2-/- infected mice. Moreover, IL-33 deficiency but not ST2 deficiency increased iNOS-positive macrophages. At the early stage of infection, the reduced pulmonary fungal burden in the IL-33-/- and ST2-/- mice was accompanied by increased neutrophil infiltration. Collectively, IL-33 regulated pulmonary C. neoformans infection in an ST2-dependent and ST2-independent manner in C57BL/6 J mice.


Asunto(s)
Criptococosis , Interleucina-33 , Animales , Ratones , Criptococosis/inmunología , Cryptococcus neoformans/fisiología , Interleucina-33/genética , Pulmón , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA