Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Sci Technol Adv Mater ; 25(1): 2393568, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39238510

RESUMEN

Sugarcane-based products are inherently rich in elements such as silicon, carbon and nitrogen. As such, these become ideal precursors for utilization in a wide array of application fields. One of the appealing areas is to transform them into nanomaterials of high interest that can be employed in several prominent applications. Among nanomaterials, sugarcane products based on silica nanoparticles (SNPs), carbon dots (CDs), metal/metal oxide-based NPs, nanocellulose, cellulose nanofibers (CNFs), and nano biochar are becoming increasingly reported. Through manipulation of the experimental conditions and choosing suitable starting precursors and elements, it is possible to devise these nanomaterials with highly desired properties suited for specific applications. The current review presents the findings from the recent literature wherein an effort has been made to convey new development in the field of sugarcane-based products for the synthesis of the above-mentioned nanomaterials. Various nanomaterials were systematically discussed in terms of their synthesis and application perspectives. Wherever possible, a comparative analysis was carried out to highlight the potential of sugarcane products for the intended purpose as compared to other biomass-based materials. This review is expected to stand out in delivering an up-to-date survey of the literature and provide readers with necessary directions for future research.


This review focuses on sugarcane-derived nanomaterials such as silica, nano cellulose, nanofibers, nanocrystals and metal/nonmetal nanoparticles and their application in various energy and environmental fields.

2.
J Environ Manage ; 352: 120109, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38232586

RESUMEN

Colloidal phosphorus (P) is an important P form in agricultural runoff and can threaten water quality. However, up to date, there are few effective approaches to mitigate colloidal P pollution. This study investigated the effect of ultraviolet (UV) irradiation on medium-colloidal (MC; 220 nm-450 nm) and fine-colloidal (FC; 3 kDa-220 nm) P in agricultural runoff. Under 24 h of UV irradiation, as the most abundant colloidal P fraction, concentration of total P (TP) in FC consistently decreased by 81.0%, while TP concentration in MC first increased by 74.4% after 3 h and then decreased with irradiation time. At the same time, particulate TP (>450 nm) concentration was found to be increased from 0 to 14.7 µM. However, there were no obvious variations in TP concentrations in FC and MC fractions under dark conditions. In FC fraction, with the decrease of TP, the corresponding concentrations of iron (Fe), aluminum (Al), silicon (Si) declined synchronously, and ferric iron/ferrous iron (Fe(III)/Fe(II)) ratio and organic matter (OM) concentration were reduced as well. These results suggested that P in FC fraction was gradually transformed into particulate P during photoreduction of Fe(III) and photodegradation of OM under UV irradiation. Our study helps to understand the mechanism of the phototransformation of colloidal P, and propose an UV irradiation-based approach to remove colloidal P in agricultural runoff.


Asunto(s)
Compuestos Férricos , Fósforo , Fósforo/análisis , Agricultura , Calidad del Agua , Hierro
3.
Environ Sci Technol ; 57(12): 4813-4820, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36929871

RESUMEN

Jarosite, a common mineral in acidic sulfur-rich environments, can strongly sorb both As(V) and Sb(V). However, little is known regarding the mechanisms that control simultaneous co-sorption of As(V) and Sb(V) to jarosite. We investigated the mechanisms controlling As(V) and Sb(V) sorption to jarosite at pH 3 (in dual and single metalloid treatments). Jarosite was found to sorb Sb(V) to a greater extent than As(V) in both single and dual metalloid treatments. Relative to single metalloid treatments, the dual presence of both As(V) and Sb(V) decreased the sorption of both metalloids by almost 50%. Antimony K-edge EXAFS spectroscopy revealed that surface precipitation of an Sb(V) oxide species was the predominant sorption mechanism for Sb(V). In contrast, As K-edge EXAFS spectroscopy showed that As(V) sorption occurred via bidentate corner-sharing complexes on the jarosite surface when Sb(V) was absent or present at low loadings or by formation of similar complexes on the Sb(V) oxide surface precipitate when Sb(V) was present at high loadings. These results point to a novel mechanism by which Sb(V) impacts the co-sorption of As(V). Overall, these findings highlight a strong contrast in the sorption mechanisms of Sb(V) versus As(V) to jarosite under acidic environmental conditions.


Asunto(s)
Arsénico , Arsénico/química , Antimonio/química , Rayos X , Adsorción , Óxidos , Espectroscopía de Absorción de Rayos X
4.
Environ Pollut ; 356: 124234, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38815892

RESUMEN

Per- and poly-fluoroalkyl substances (PFASs) are contaminants of emerging concern, yet the understanding of factors that control their leaching and release from contaminated soils remains limited. This study aimed to investigate the impact of dissolved organic carbon (DOC) on the release of PFASs-specifically, perfluorohexane sulfonate (PFHxS), perfluorooctane sulfonate (PFOS), and perfluorooctanoic acid (PFOA)from soils contaminated by aqueous film forming foam (AFFF). Batch aqueous leaching experiments were conducted on AFFF-contaminated soils under alkaline solution conditions (pH 9.5, 10.5, and 12) as it enhances leaching of both PFAS and DOC. Leaching of PFOS was significantly increased under alkaline conditions. Although the leaching of PFAS generally increased with pH, PFOS appeared to be more retained under the very alkaline pH conditions used in this study. At the same solution pH, leaching of PFOS and DOC was less in Ca(OH)2 than in NaOH. The retention of PFOS under these conditions may be attributable to the shielding of the negative charge of the soil components and colloids (e.g., DOC and clay minerals) in the leachates and/or the screening of negative charges on head groups of PFOS due to the high concentration of divalent cations. Solution chemistry affected desorption of PFOS more than PFHxS and PFOA. The study highlights that the influence of DOC on PFAS leaching and transport can be very complex, and depends on leachate chemistry (e.g., pH and cation type), PFAS chemistry, the magnitude of PFAS contamination and factors that influence the solid:liquid partitioning of organic carbon in soil.


Asunto(s)
Ácidos Alcanesulfónicos , Carbono , Fluorocarburos , Contaminantes del Suelo , Suelo , Fluorocarburos/química , Contaminantes del Suelo/química , Suelo/química , Carbono/química , Ácidos Alcanesulfónicos/química , Concentración de Iones de Hidrógeno , Caprilatos/química , Adsorción , Ácidos Sulfónicos
5.
Sci Total Environ ; 939: 173606, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-38823704

RESUMEN

Organic soil amendments have been widely adopted to enhance soil organic carbon (SOC) stocks in agroforestry ecosystems. However, the contrasting impacts of pyrogenic and fresh organic matter on native SOC mineralization and the underlying mechanisms mediating those processes remain poorly understood. Here, an 80-day experiment was conducted to compare the effects of maize straw and its derived biochar on native SOC mineralization within a Moso bamboo (Phyllostachys edulis) forest soil. The quantity and quality of SOC, the expression of microbial functional genes concerning soil C cycling, and the activity of associated enzymes were determined. Maize straw enhanced while its biochar decreased the emissions of native SOC-derived CO2. The addition of maize straw (cf. control) enhanced the O-alkyl C proportion, activities of ß-glucosidase (BG), cellobiohydrolase (CBH) and dehydrogenase (DH), and abundances of GH48 and cbhI genes, while lowered aromatic C proportion, RubisCO enzyme activity, and cbbL abundance; the application of biochar induced the opposite effects. In all treatments, the cumulative native SOC-derived CO2 efflux increased with enhanced O-alkyl C proportion, activities of BG, CBH, and DH, and abundances of GH48 and cbhI genes, and with decreases in aromatic C, RubisCO enzyme activity and cbbL gene abundance. The enhanced emissions of native SOC-derived CO2 by the maize straw were associated with a higher O-alkyl C proportion, activities of BG and CBH, and abundance of GH48 and cbhI genes, as well as a lower aromatic C proportion and cbbL gene abundance, while biochar induced the opposite effects. We concluded that maize straw induced positive priming, while its biochar induced negative priming within a subtropical forest soil, due to the contrasting microbial responses resulted from changes in SOC speciation and compositions. Our findings highlight that biochar application is an effective approach for enhancing soil C stocks in subtropical forests.


Asunto(s)
Carbono , Carbón Orgánico , Bosques , Suelo , Zea mays , Carbón Orgánico/química , Suelo/química , Microbiología del Suelo
6.
Environ Sci Technol ; 47(19): 11157-65, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-23981056

RESUMEN

The interaction of inorganic contaminants present in biosolids with iron, aluminum, and manganese oxy/hydroxides has been advocated as a key mechanism limiting their bioavailability. In this study, we investigated whether this is indeed the case, and further, whether it can be exploited to produce optimized biosolids products through the addition of chemical additives during sewage sludge processing. Experiments were conducted to investigate whether the addition of iron- and aluminum-based amendments (at 5 different rates) during the anaerobic digestion phase of wastewater treatment can effectively change the speciation or lability of contaminant metals (copper, zinc and cadmium) in biosolids destined for use in agriculture. The performance of the bioreactors was monitored throughout and the speciation and lability were determined in both fresh and 3-month aged biosolids using X-ray absorption spectroscopy (Cu, Zn) and isotopic dilution ((65)Cu, (65)Zn, (109)Cd). The tested amendments (FeCl3, Al2(SO4)3, and Al-rich water treatment residual) did not cause significant changes in metal speciation and were of limited use for reducing the lability of contaminant metals in good quality biosolids (suitable for use in agriculture), suggesting that high affinity binding sites were already in excess in these materials. However, the use of chemical amendments may offer advantages in terms of treatment process optimization and may also be beneficial when biosolids are used for contaminated site remediation.


Asunto(s)
Compuestos de Alumbre/farmacología , Bacterias/efectos de los fármacos , Cloruros/farmacología , Compuestos Férricos/farmacología , Metales/química , Aguas del Alcantarillado/química , Anaerobiosis , Bacterias/metabolismo , Reactores Biológicos , Metales/metabolismo , Aguas del Alcantarillado/microbiología , Eliminación de Residuos Líquidos
7.
Sci Total Environ ; 888: 164107, 2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37201851

RESUMEN

The influence of nutrients during natural vegetation restoration (NVR) in complicated landscapes and hydrologic conditions has often been debated. This study aimed to clarify how nitrogen (N) and phosphorus (P) runoff influences plant biomass and biodiversity during early restoration stages in gullies. In this study, the influence of runoff containing N, P, and N + P on the biomass and diversity of ten predominant herbaceous species was simulated in two degraded Phaeozems of gullies by under controlled conditions for two years. Increasing N in runoff increased the biomass in both low-degradation Phaeozems (LDP) and high-degradation Phaeozems (HDP), and N input could increase the competitive ability of No-Gramineae (NG) and constrain G biomass in the second year. N and P increased the biomass by increasing the species abundance and individual mass but not the diversity. N input typically decreased biodiversity, while P input influenced the dynamics of biodiversity was nonmonotonic increased or decreased. Compared with sole N input, additional P accelerated the competition of NG, restrained G mass, and decreased the total biomass in LDP, while increasing the total biomass in HDP in the first year. However, additional P input did not change the N effects on biodiversity in the first year, while high P input improved the herbaceous diversity in the second year of gullies. Generally, N in runoff was the key factor influencing NVR, especially for biomass in early NVR stages. The P dose and the ratio of N:P in the runoff were the main determinants of P mediation on the N effect on NVR.


Asunto(s)
Nitrógeno , Suelo , Nitrógeno/análisis , Fósforo , Biomasa , Biodiversidad , Poaceae , Ecosistema , Carbono
8.
Sci Total Environ ; 863: 160913, 2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36529393

RESUMEN

Wetland soil denitrification removes excess inorganic nitrogen (N) and prevents eutrophication in aquatic ecosystems. Wetland plants have been considered the key factors determining the capacity of wetland soil denitrification to remove N pollutants in aquatic ecosystems. However, the influences of various plant communities on wetland soil denitrification remain unknown. In the present study, we measured variations in soil denitrification under different herbaceous plant communities including single Phragmites karka (PK), single Paspalum thunbergia (PT), single Zizania latifolia (ZL), a mixture of Paspalum thunbergia plus Phragmites karka (PTPK), a mixture of Paspalum thunbergia plus Zizania latifolia (PTZL), and bare soil (CK) in the Estuary of Nantiaoxi River, the largest tributary of Qingshan Lake in Hangzhou, China. The soil denitrification rate was significantly higher in the surface (0-10 cm) than the subsurface (10-20 cm) layer. Wetland plant growth increased the soil denitrification rate by significantly increasing the soil water content, nitrate concentration, and ln(nirS) + ln(nirK). A structural equation model (SEM) showed that wetland plants indirectly regulated soil denitrification by altering the aboveground and belowground plant biomass, nitrate concentration, abundances of denitrifying functional genes, and denitrification potential. There was no significant difference in soil denitrification rates among PT, PK and ZL. The soil denitrification rate was significantly lower in PTZL than PTPK. Two-plant communities did not necessarily enhance the denitrification rate compared to single planting, the former had a greater competitiveness on N uptake and consequently reduced the amount of nitrate available for denitrification. As PTPK had the highest denitrification rate, co-planting P. thunbergia and P. karka could effectively improve N removal efficiency and help mitigate eutrophication in adjacent aquatic ecosystems. The results of this investigation provide useful information guiding the selection of appropriate wetland herbaceous plant species for wetland construction and the removal of N pollutants in aquatic ecosystems.


Asunto(s)
Contaminantes Ambientales , Humedales , Ecosistema , Nitratos , Desnitrificación , Plantas , Suelo/química , Poaceae , Microbiología del Suelo , Nitrógeno
9.
J Exp Bot ; 63(10): 3853-67, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22442423

RESUMEN

Success in breeding crops for yield and other quantitative traits depends on the use of methods to evaluate genotypes accurately under field conditions. Although many screening criteria have been suggested to distinguish between genotypes for their salt tolerance under controlled environmental conditions, there is a need to test these criteria in the field. In this study, the salt tolerance, ion concentrations, and accumulation of compatible solutes of genotypes of barley with a range of putative salt tolerance were investigated using three growing conditions (hydroponics, soil in pots, and natural saline field). Initially, 60 genotypes of barley were screened for their salt tolerance and uptake of Na(+), Cl(-), and K(+) at 150 mM NaCl and, based on this, a subset of 15 genotypes was selected for testing in pots and in the field. Expression of salt tolerance in saline solution culture was not a reliable indicator of the differences in salt tolerance between barley plants that were evident in saline soil-based comparisons. Significant correlations were observed in the rankings of genotypes on the basis of their grain yield production at a moderately saline field site and their relative shoot growth in pots at EC(e) 7.2 [Spearman's rank correlation (rs)=0.79] and EC(e) 15.3 (rs=0.82) and the crucial parameter of leaf Na(+) (rs=0.72) and Cl(-) (rs=0.82) concentrations at EC(e) 7.2 dS m(-1). This work has established screening procedures that correlated well with grain yield at sites with moderate levels of soil salinity. This study also showed that both salt exclusion and osmotic tolerance are involved in salt tolerance and that the relative importance of these traits may differ with the severity of the salt stress. In soil, ion exclusion tended to be more important at low to moderate levels of stress but osmotic stress became more important at higher stress levels. Salt exclusion coupled with a synthesis of organic solutes were shown to be important components of salt tolerance in the tolerant genotypes and further field tests of these plants under stress conditions will help to verify their potential utility in crop-improvement programmes.


Asunto(s)
Cruzamiento/métodos , Hordeum/fisiología , Tolerancia a la Sal , Cloruro de Sodio/metabolismo , Cambio Climático , Ecosistema , Hordeum/genética , Hordeum/crecimiento & desarrollo , Hidroponía , Suelo/análisis
10.
Environ Sci Technol ; 46(16): 9089-96, 2012 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-22816872

RESUMEN

The rapid development and commercialization of nanomaterials will inevitably result in the release of nanoparticles (NPs) to the environment. As NPs often exhibit physical and chemical properties significantly different from those of their molecular or macrosize analogs, concern has been growing regarding their fate and toxicity in environmental compartments. The wastewater-sewage sludge pathway has been identified as a key release pathway leading to environmental exposure to NPs. In this study, we investigated the chemical transformation of two ZnO-NPs and one hydrophobic ZnO-NP commercial formulation (used in personal care products), during anaerobic digestion of wastewater. Changes in Zn speciation as a result of postprocessing of the sewage sludge, mimicking composting/stockpiling, were also assessed. The results indicated that "native" Zn and Zn added either as a soluble salt or as NPs was rapidly converted to sulfides in all treatments. The hydrophobicity of the commercial formulation retarded the conversion of ZnO-NP. However, at the end of the anaerobic digestion process and after postprocessing of the sewage sludge (which caused a significant change in Zn speciation), the speciation of Zn was similar across all treatments. This indicates that, at least for the material tested, the risk assessment of ZnO-NP through this exposure pathway can rely on the significant knowledge already available in regard to other "conventional" forms of Zn present in sewage sludge.


Asunto(s)
Nanopartículas del Metal , Aguas del Alcantarillado , Óxido de Zinc/química , Anaerobiosis
11.
J Control Release ; 343: 187-206, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35090962

RESUMEN

One of the key focuses of the agricultural industry for preventing the decline in crop yields due to pests is to develop effective, safe, green, and sustainable pesticide formulation. A key objective of industry is to deliver active ingredients (AIs) that have minimal off site migration and non-target activity. Nanoporous materials have received significant attention internationally for the efficient loading and controlled, targeted delivery of pesticides. This is largely made possible due to their textural features including high surface area, large pore-volume, and tunable pore size. Additionally, the easier manipulation of their surface chemistry and stability in different environments are added advantages. The unique features of these materials allow them to address the solubility of the active ingredients, their efficient loading onto the porous channels, and slow and controlled delivery over time. One of their major advantages is the wide range of materials that could be suitably designed via different approaches to either adsorb, encapsulate, or entrap the active ingredient. This review is a timely presentation of recent progress made in nanoporous materials and discusses critical aspects of pesticide formulation and delivery.


Asunto(s)
Nanoporos , Plaguicidas , Agricultura , Porosidad , Solubilidad
12.
Nat Commun ; 13(1): 5177, 2022 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-36056025

RESUMEN

The soil carbon (C) saturation concept suggests an upper limit to the storage of soil organic carbon (SOC). It is set by the mechanisms that protect soil organic matter from mineralization. Biochar has the capacity to protect new C, including rhizodeposits and microbial necromass. However, the decadal-scale mechanisms by which biochar influences the molecular diversity, spatial heterogeneity, and temporal changes in SOC persistence, remain unresolved. Here we show that the soil C storage ceiling of a Ferralsol under subtropical pasture was raised by a second application of Eucalyptus saligna biochar 8.2 years after the first application-the first application raised the soil C storage ceiling by 9.3 Mg new C ha-1 and the second application raised this by another 2.3 Mg new C ha-1. Linking direct visual evidence from one-, two-, and three-dimensional analyses with SOC quantification, we found high spatial heterogeneity of C functional groups that resulted in the retention of rhizodeposits and microbial necromass in microaggregates (53-250 µm) and the mineral fraction (<53 µm). Microbial C-use efficiency was concomitantly increased by lowering specific enzyme activities, contributing to the decreased mineralization of native SOC by 18%. We suggest that the SOC ceiling can be lifted using biochar in (sub)tropical grasslands globally.


Asunto(s)
Carbono , Suelo , Secuestro de Carbono , Carbón Orgánico/química , Suelo/química , Microbiología del Suelo
13.
J Exp Bot ; 62(6): 2189-203, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21273334

RESUMEN

Soil salinity affects large areas of the world's cultivated land, causing significant reductions in crop yield. Despite the fact that most plants accumulate both sodium (Na(+)) and chloride (Cl(-)) ions in high concentrations in their shoot tissues when grown in saline soils, most research on salt tolerance in annual plants has focused on the toxic effects of Na(+) accumulation. It has previously been suggested that Cl(-) toxicity may also be an important cause of growth reduction in barley plants. Here, the extent to which specific ion toxicities of Na(+) and Cl(-) reduce the growth of barley grown in saline soils is shown under varying salinity treatments using four barley genotypes differing in their salt tolerance in solution and soil-based systems. High Na(+), Cl(-), and NaCl separately reduced the growth of barley, however, the reductions in growth and photosynthesis were greatest under NaCl stress and were mainly additive of the effects of Na(+) and Cl(-) stress. The results demonstrated that Na(+) and Cl(-) exclusion among barley genotypes are independent mechanisms and different genotypes expressed different combinations of the two mechanisms. High concentrations of Na(+) reduced K(+) and Ca(2+) uptake and reduced photosynthesis mainly by reducing stomatal conductance. By comparison, high Cl(-) concentration reduced photosynthetic capacity due to non-stomatal effects: there was chlorophyll degradation, and a reduction in the actual quantum yield of PSII electron transport which was associated with both photochemical quenching and the efficiency of excitation energy capture. The results also showed that there are fundamental differences in salinity responses between soil and solution culture, and that the importance of the different mechanisms of salt damage varies according to the system under which the plants were grown.


Asunto(s)
Cloruros/toxicidad , Hordeum/crecimiento & desarrollo , Salinidad , Sodio/toxicidad , Estrés Fisiológico , Biomasa , Dióxido de Carbono/metabolismo , Clorofila/metabolismo , Genotipo , Hordeum/genética , Hordeum/metabolismo , Hidroponía , Brotes de la Planta/metabolismo , Agua/metabolismo
14.
Environ Pollut ; 287: 117565, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34182398

RESUMEN

Biochar is often applied to paddy soils as a soil improver, as it retains nutrients and increases C sequestration; as such, it is a tool in the move towards C-neutral agriculture. Nitrogen (N) fertilizers have been excessively applied to rice paddies, particularly in small farms in China, because N is the major limiting factor for rice production. In paddy soils, dynamic changes in iron (Fe) continuously affect soil emissions of methane (CH4) and carbon dioxide (CO2); however, the links between Fe dynamics and greenhouse gas emissions, dissolved organic carbon (DOC), and rice yields following application of biochar remain unclear. The aims of this study were to examine the effects of two rates of nitrogen (N)-enriched biochar (4 and 8 t ha-1 y-1) on paddy soil C emissions and storage, rice yields, and Fe dynamics in subtropical early and late rice growing seasons. Field application of N-enriched biochar at 4 and 8 t ha-1 increased C emissions in early and late rice, whereas application at 4 t ha-1 significantly increased rice yields. The results of a culture experiment and a field experiment showed that the application of N-enriched biochar increased soil Fe2+concentration. There were positive correlations between Fe2+concentrations and soil CO2, CH4, and total C emissions, and with soil DOC concentrations. On the other way around, these correlations were negative for soil Fe3+concentrations. In the soil culture experiment, under the exclusion of plant growth, N-enriched biochar reduced cumulative soil emissions of CH4 and CO2. We conclude that moderate inputs of N-rich biochar (4 t ha-1) increase rice crop yield and biomass, and soil DOC concentrations, while moderating soil cumulative C emissions, in part, by the impacts of biochar on soil Fe dynamics. We suggest that water management strategies, such as dry-wet cycles, should be employed in rice cultivation to increase Fe2+ oxidation for the inhibition of soil CH4 and CO2 production. Overall, we showed that application of 4 t ha-1 of N-enriched biochar may represent a potential tool to improve sustainable food production and security, while minimizing negative environmental impacts.


Asunto(s)
Oryza , Suelo , Agricultura , Dióxido de Carbono/análisis , Carbón Orgánico , Hierro , Metano , Nitrógeno , Óxido Nitroso/análisis
15.
J Exp Bot ; 61(15): 4449-59, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20713463

RESUMEN

Despite the fact that most plants accumulate both sodium (Na(+)) and chloride (Cl(-)) ions to high concentration in their shoot tissues when grown in saline soils, most research on salt tolerance in annual plants has focused on the toxic effects of Na(+) accumulation. There have also been some recent concerns about the ability of hydroponic systems to predict the responses of plants to salinity in soil. To address these two issues, an experiment was conducted to compare the responses to Na(+) and to Cl(-) separately in comparison with the response to NaCl in a soil-based system using two varieties of faba bean (Vicia faba), that differed in salinity tolerance. The variety Nura is a salt-sensitive variety that accumulates Na(+) and Cl(-) to high concentrations while the line 1487/7 is salt tolerant which accumulates lower concentrations of Na(+) and Cl(-). Soils were prepared which were treated with Na(+) or Cl(-) by using a combination of different Na(+) salts and Cl(-) salts, respectively, or with NaCl. While this method produced Na(+)-dominant and Cl(-)-dominant soils, it unavoidably led to changes in the availability of other anions and cations, but tissue analysis of the plants did not indicate any nutritional deficiencies or toxicities other than those targeted by the salt treatments. The growth, water use, ionic composition, photosynthesis, and chlorophyll fluorescence were measured. Both high Na(+) and high Cl(-) reduced growth of faba bean but plants were more sensitive to Cl(-) than to Na(+). The reductions in growth and photosynthesis were greater under NaCl stress and the effect was mainly additive. An important difference to previous hydroponic studies was that increasing the concentrations of NaCl in the soil increased the concentration of Cl(-) more than the concentration of Na(+). The data showed that salinity caused by high concentrations of NaCl can reduce growth by the accumulation of high concentrations of both Na(+) and Cl(-) simultaneously, but the effects of the two ions may differ. High Cl(-) concentration reduces the photosynthetic capacity and quantum yield due to chlorophyll degradation which may result from a structural impact of high Cl(-) concentration on PSII. High Na(+) interferes with K(+) and Ca(2+) nutrition and disturbs efficient stomatal regulation which results in a depression of photosynthesis and growth. These results suggest that the importance of Cl(-) toxicity as a cause of reductions in growth and yield under salinity stress may have been underestimated.


Asunto(s)
Cloruros/farmacología , Salinidad , Sodio/farmacología , Suelo/química , Estrés Fisiológico/efectos de los fármacos , Vicia faba/efectos de los fármacos , Vicia faba/crecimiento & desarrollo , Biomasa , Cloruros/metabolismo , Clorofila/metabolismo , Conductividad Eléctrica , Fluorescencia , Gases/metabolismo , Genotipo , Concentración de Iones de Hidrógeno/efectos de los fármacos , Iones , Ósmosis/efectos de los fármacos , Hojas de la Planta/metabolismo , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/metabolismo , Sodio/metabolismo , Soluciones , Vicia faba/anatomía & histología , Vicia faba/genética , Agua/metabolismo
16.
Adv Mater ; 32(18): e1904635, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31608512

RESUMEN

Carbon nitride (CN), a 2D material composed of only carbon (C) and nitrogen (N), which are linked by strong covalent bonds, has been used as a metal-devoid and visible-light-active photocatalyst owing to its magnificent optoelectronic and physicochemical properties including suitable bandgap, adjustable energy-band positions, tailor-made surface functionalities, low cost, metal-free nature, and high thermal, chemical, and mechanical stabilities. CN-based materials possess a lot of advantages over conventional metal-based inorganic photocatalysts including ease of synthesis and processing, versatile functionalization or doping, flexibility for surface engineering, low cost, sustainability, and recyclability without any leaching of toxic metals from photocorrosion. Carbon nitrides and their hybrid materials have emerged as attractive candidates for CO2 capture and its reduction into clean and green low-carbon fuels and valuable chemical feedstock by using sustainable and intermittent renewable energy sources of sunlight and electricity through the heterogeneous photo(electro)catalysis. Here, the latest research results in this field are summarized, including implementation of novel functionalized nanostructured CNs and their hybrid heterostructures in meeting the stringent requirements to raise the efficiency of the CO2 reduction process by using state-of-the-art photocatalysis, electrocatalysis, photoelectrocatalysis, and feedstock reactions. The research in this field is primarily focused on advancement in the synthesis of nanostructured and functionalized CN-based hybrid heterostructured materials. More importantly, the recent past has seen a surge in studies focusing significantly on exploring the mechanism of their application perspectives, which include the behavior of the materials for the absorption of light, charge separation, and pathways for the transport of CO2 during the reduction process.

17.
Sci Total Environ ; 646: 735-744, 2019 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-30064100

RESUMEN

Glyphosate represents one quarter of global herbicide sales, with growing interest in both its fate in soils and potential to cause non-target phytotoxicity to plants. However, assessing glyphosate bioavailability to plants from soil residues remains challenging. Here we demonstrate that the diffusive gradient in thin-films technique (DGT) can effectively measure available glyphosate across boundary conditions typical of the soil environment: pH 4-9, P concentrations of 20-300 µg P L-1 and NaHCO3 concentrations of 10-1800 mg L-1. In this study, four soils with different glyphosate sorption properties were dosed with up to 16 mg kg-1 of glyphosate and phytotoxicity to wheat and lupin was measured against the DGT-glyphosate concentrations. An improved dose response curve was obtained for root elongation of wheat and lupin across soil types when DGT-glyphosate was used instead of alkaline-extractable (i.e., total extractable) glyphosate. Total extractable glyphosate concentrations of 2.6 and 5.0 mg glyphosate kg-1 in the sandy Tenosol, equivalent to 2.9 and 6.5 µg L-1 DGT-extractable glyphosate, reduced the root length of lupins (but not wheat) by 32-36% compared with the untreated control. DGT is therefore a promising method for assessing phytotoxic levels of glyphosate across different soils.


Asunto(s)
Monitoreo del Ambiente/métodos , Glicina/análogos & derivados , Contaminantes del Suelo/análisis , Glicina/análisis , Suelo , Glifosato
18.
Environ Pollut ; 199: 244-52, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25689461

RESUMEN

The association of polycyclic aromatic hydrocarbons (PAHs) with inorganic and organic colloids is an important factor influencing their bioavailability, mobility and degradation in the environment. Despite this, our understanding of the exchangeability and potential bioavailability of PAHs associated with colloids is limited. The objective of this study was to use phenanthrene as a model PAH compound and develop a technique using (14)C phenanthrene to quantify the isotopically exchangeable and non-exchangeable forms of phenanthrene in filtered soil water or sodium tetraborate extracts. The study was also designed to investigate the exchangeability of colloidal phenanthrene as a function of particle size. Our findings suggest that the exchangeability of phenanthrene in sodium tetraborate is controlled by both inorganic and organic colloids, while in aqueous solutions inorganic colloids play the dominant role (even though coating of these by organic matter cannot be excluded). Filter pore size did not have a significant effect on phenanthrene exchangeability.


Asunto(s)
Coloides/análisis , Modelos Químicos , Fenantrenos/análisis , Contaminantes del Suelo/análisis , Suelo/química , Monitoreo del Ambiente , Técnicas de Dilución del Indicador , Hidrocarburos Policíclicos Aromáticos/análisis
20.
Environ Pollut ; 176: 193-7, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23434771

RESUMEN

The increasing use of silver (Ag) nanoparticles [containing either elemental Ag (Ag-NPs) or AgCl (AgCl-NPs)] in commercial products such as textiles will most likely result in these materials reaching wastewater treatment plants. Previous studies indicate that a conversion of Ag-NPs to Ag2S is to be expected during wastewater transport/treatment. However, the influence of surface functionality, the nature of the core structure and the effect of post-processing on Ag speciation in sewage sludge/biosolids has not been investigated. This study aims at closing these knowledge gaps using bench scale anaerobic digesters spiked with Ag nitrate, three different types of Ag-NPs, and AgCl-NPs at environmentally realistic concentrations. The results indicate that neither surface functionality nor the different compositions of the NP prevented the formation of Ag2S. Silver sulfides, unlike the sulfides of other metals present in sewage sludge, were stable over a six month period simulating composting/stockpiling.


Asunto(s)
Biotransformación , Nanopartículas del Metal/análisis , Aguas del Alcantarillado/química , Compuestos de Plata/análisis , Eliminación de Residuos Líquidos , Aguas Residuales/química , Contaminantes Químicos del Agua/análisis , Anaerobiosis , Aguas del Alcantarillado/microbiología , Compuestos de Plata/metabolismo , Aguas Residuales/microbiología , Contaminantes Químicos del Agua/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA