Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Med Chem ; 20(1): 78-91, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37594099

RESUMEN

INTRODUCTION: Inflammation can be defined as a complex biological response that is produced by body tissues to harmful agents like pathogens, irritants, and damaged cells and thereby acts as a protective response incorporating immune cells, blood vessels, and molecular mediators. Histamine, serotonin, bradykinin, leukotrienes (LTB4), prostaglandins (PGE2), prostacyclins, reactive oxygen species, proinflammatory cytokines like IL-1, IL-11, TNF- anti-inflammatory cytokines like IL-4, IL-10, IL-11, IL-6 and IL-13, etc. all have different effects on both pro and anti-inflammatory mediators. Incorporation of combinatorial chemistry and computational studies have helped the researchers to design xanthones moieties with high selectivity that can serve as a lead compound and help develop potential compounds that can act as effective COX-2 inhibitors. The study aims to design and develop different series of substituted hydroxyxanthone derivatives with anti-inflammatory potential. METHODS: The partially purified synthetic xanthone derivatives were orally administered to the carrageenan induced paw oedemic rat models at the dose of 100 mg/kg, and their effect in controlling the degree of inflammation was measured at the time interval of 30 min, 1, 2, 3, 4 and 6 hrs. respectively. Further, these compounds were also subjected to modern analytical studies like UV, IR, NMR and mass spectrometry or their characterization. RESULTS: The results drawn out of the in silico, in vitro, in vivo and analytical studies concluded that the hydroxyxanthone derivatives can obstruct the enzyme COX-2 and produce anti-inflammatory action potentially. CONCLUSION: With the aim to evaluate the compounds for their anti-inflammatory activity, it was observed that the newly designed xanthonic compounds also possess a safe toxicity margin and hence can be utilized by the researchers to develop hybrid xanthonic moieties that can specifically target the enzyme COX-2.


Asunto(s)
Inhibidores de la Ciclooxigenasa 2 , Xantonas , Animales , Ratas , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Carragenina/uso terapéutico , Ciclooxigenasa 2/metabolismo , Inhibidores de la Ciclooxigenasa 2/farmacología , Citocinas , Edema/inducido químicamente , Edema/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Interleucina-11/metabolismo , Relación Estructura-Actividad Cuantitativa , Xantonas/farmacología
2.
Artículo en Inglés | MEDLINE | ID: mdl-38551038

RESUMEN

Alzheimer's disease (AD) is a prevalent neurodegenerative disorder affecting elderly individuals, characterized by progressive cognitive decline leading to dementia. This review examines the challenges posed by anatomical and biochemical barriers such as the blood-brain barrier (BBB), blood-cerebrospinal fluid barrier (BCSFB), and p-glycoproteins in delivering effective therapeutic agents to the central nervous system (CNS) for AD treatment. This article outlines the fundamental role of acetylcholinesterase inhibitors (AChEIs) and NMDA(N-Methyl-D-Aspartate) receptor antagonists in conventional AD therapy and highlights their limitations in terms of brain-specific delivery. It delves into the intricacies of BBB and pglycoprotein-mediated efflux mechanisms that impede drug transport to the CNS. The review further discusses cutting-edge nanomedicine-based strategies, detailing their composition and mechanisms that enable effective bypassing of BBB and enhancing drug accumulation in brain tissues. Conventional therapies, namely AChEIs and NMDA receptor antagonists, have shown limited efficacy and are hindered by suboptimal brain penetration. The advent of nanotechnology-driven therapeutic delivery systems offers promising strategies to enhance CNS targeting and bioavailability, thereby addressing the shortcomings of conventional treatments. Various nanomedicines, encompassing polymeric and metallic nanoparticles (MNPs), solid lipid nanoparticles (SLNs), liposomes, micelles, dendrimers, nanoemulsions, and carbon nanotubes, have been investigated for their potential in delivering anti-AD agents like AChEIs, polyphenols, curcumin, and resveratrol. These nanocarriers exhibit the ability to traverse the BBB and deliver therapeutic payloads to the brain, thereby holding immense potential for effective AD treatment and early diagnostic approaches. Notably, nanocarriers loaded with AChEIs have shown promising results in preclinical studies, exhibiting improved therapeutic efficacy and sustained release profiles. This review underscores the urgency of innovative drug delivery approaches to overcome barriers in AD therapy. Nanomedicine-based solutions offer a promising avenue for achieving effective CNS targeting, enabling enhanced bioavailability and sustained therapeutic effects. As ongoing research continues to elucidate the complexities of CNS drug delivery, these advancements hold great potential for revolutionizing AD treatment and diagnosis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA