Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Am J Hum Genet ; 109(2): 210-222, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35065709

RESUMEN

Variable levels of gene expression between tissues complicates the use of RNA sequencing of patient biosamples to delineate the impact of genomic variants. Here, we describe a gene- and tissue-specific metric to inform the feasibility of RNA sequencing. This overcomes limitations of using expression values alone as a metric to predict RNA-sequencing utility. We have derived a metric, minimum required sequencing depth (MRSD), that estimates the depth of sequencing required from RNA sequencing to achieve user-specified sequencing coverage of a gene, transcript, or group of genes. We applied MRSD across four human biosamples: whole blood, lymphoblastoid cell lines (LCLs), skeletal muscle, and cultured fibroblasts. MRSD has high precision (90.1%-98.2%) and overcomes transcript region-specific sequencing biases. Applying MRSD scoring to established disease gene panels shows that fibroblasts, of these four biosamples, are the optimum source of RNA for 63.1% of gene panels. Using this approach, up to 67.8% of the variants of uncertain significance in ClinVar that are predicted to impact splicing could be assayed by RNA sequencing in at least one of the biosamples. We demonstrate the utility and benefits of MRSD as a metric to inform functional assessment of splicing aberrations, in particular in the context of Mendelian genetic disorders to improve diagnostic yield.


Asunto(s)
Enfermedades Genéticas Congénitas/genética , Empalme del ARN , ARN Mensajero/genética , Análisis de Secuencia de ARN/estadística & datos numéricos , Programas Informáticos , Linfocitos B/metabolismo , Linfocitos B/patología , Células Sanguíneas/metabolismo , Células Sanguíneas/patología , Línea Celular , Fibroblastos/metabolismo , Fibroblastos/patología , Enfermedades Genéticas Congénitas/clasificación , Enfermedades Genéticas Congénitas/metabolismo , Enfermedades Genéticas Congénitas/patología , Variación Genética , Humanos , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , ARN Mensajero/metabolismo , Proyectos de Investigación , Secuenciación del Exoma/estadística & datos numéricos
2.
J Med Genet ; 59(4): 393-398, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-33879512

RESUMEN

PURPOSE: The increased adoption of genomic strategies in the clinic makes it imperative for diagnostic laboratories to improve the efficiency of variant interpretation. Clinical exome sequencing (CES) is becoming a valuable diagnostic tool, capable of meeting the diagnostic demand imposed by the vast array of different rare monogenic disorders. We have assessed a clinician-led and phenotype-based approach for virtual gene panel generation for analysis of targeted CES in patients with rare disease in a single institution. METHODS: Retrospective survey of 400 consecutive cases presumed by clinicians to have rare monogenic disorders, referred on singleton basis for targeted CES. We evaluated diagnostic yield and variant workload to characterise the usefulness of a clinician-led approach for generation of virtual gene panels that can incorporate up to three different phenotype-driven gene selection methods. RESULTS: Abnormalities of the nervous system (54.5%), including intellectual disability, head and neck (19%), skeletal system (16%), ear (15%) and eye (15%) were the most common clinical features reported in referrals. Combined phenotype-driven strategies for virtual gene panel generation were used in 57% of cases. On average, 7.3 variants (median=5) per case were retained for clinical interpretation. The overall diagnostic rate of proband-only CES using personalised phenotype-driven virtual gene panels was 24%. CONCLUSIONS: Our results show that personalised virtual gene panels are a cost-effective approach for variant analysis of CES, maintaining diagnostic yield and optimising the use of resources for clinical genomic sequencing in the clinic.


Asunto(s)
Exoma , Enfermedades Raras , Exoma/genética , Humanos , Enfermedades Raras/genética , Estudios Retrospectivos , Secuenciación del Exoma , Carga de Trabajo
4.
J Mol Diagn ; 23(5): 532-540, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33549858

RESUMEN

Routine testing for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in health care workers (HCWs) is critical. Group testing strategies to increase capacity facilitate mass population testing but do not prioritize turnaround time, an important consideration for HCW screening. We propose a nonadaptive combinatorial (NAC) group testing strategy to increase throughput while facilitating rapid turnaround. NAC matrices were constructed for sample sizes of 700, 350, and 250. Matrix performance was tested by simulation under different SARS-CoV-2 prevalence scenarios of 0.1% to 10%. NAC matrices were compared versus Dorfman sequential (DS) group testing approaches. NAC matrices performed well at low prevalence levels, with an average of 97% of samples resolved after a single round of testing via the n = 700 matrix at a prevalence of 1%. In simulations of low to medium (0.1% to 3%) prevalence, all NAC matrices were superior to the DS strategy, measured by fewer repeated tests required. At very high prevalence levels (10%), the DS matrix was marginally superior, although both group testing approaches performed poorly at high prevalence levels. This strategy maximizes the proportion of samples resolved after a single round of testing, allowing prompt return of results to HCWs. This methodology may allow laboratories to adapt their testing scheme based on required throughput and the current population prevalence, facilitating a data-driven testing strategy.


Asunto(s)
COVID-19/diagnóstico , SARS-CoV-2/aislamiento & purificación , Prueba de COVID-19/economía , Prueba de COVID-19/métodos , Brotes de Enfermedades , Personal de Salud , Humanos , Tamizaje Masivo/economía , Tamizaje Masivo/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA