Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Photodiagnosis Photodyn Ther ; 47: 104097, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38677499

RESUMEN

Under controlled settings, narrow-band ultraviolet A (UVA) exposure exerts antiviral effects both in vivo and in vitro. The effect is thought to be mediated via direct effect on viral particles and indirectly, by modulation of metabolic pathways of host cells. We aimed to explore the extracellular and intracellular antiviral effects of UVA exposure against Alpha, Beta, and Delta variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). METHODS: Vero E6 kidney normal epithelial cells and human tracheal epithelial cells were infected with Alpha, Beta, and Delta variants in a BSL-3 laboratory. To assess extracellular effects, SARS-CoV-2 variants were directly exposed to a single dose of UVA prior to infection of the host cells (Vero E6 kidney normal epithelial cells and human tracheal epithelial cells) The intracellular effects of UVA were assessed by first infecting the cells with SARS-CoV-2 variants followed by UVA treatment of infected cell monolayers. Efficacy was quantified by both plaque reduction assay and quantitative real-time polymerase chain reaction. Additionally, transcriptomic analysis was performed on exposed Vero E6 cells to assess differentially expressed genes and canonical pathways as compared to controls. RESULTS: SARS-CoV-2 Alpha, Beta and Delta variants are susceptible to UVA exposure prior to infection of Vero E6 cells. Importantly, the UVA-driven reduction in Delta variant load could be reproduced in human primary tracheal cells. Beta and Delta variants load also significantly decreased during Vero E6 cells intracellular experiments. UVA-driven reductions in viral loads ameliorate several host metabolic pathways, including canonical pathways related to viral infection and interferon signaling. CONCLUSION: Narrow-band UVA exhibits both extracellular effects on SARS-CoV-2 viral particles and intracellular effects on infected cells with SARS-CoV-2. Efficacy appears to be variant independent.


Asunto(s)
SARS-CoV-2 , Chlorocebus aethiops , Animales , Células Vero , Humanos , Rayos Ultravioleta , COVID-19 , Células Epiteliales/virología
2.
Compend Contin Educ Dent ; 43(2): e13-e16, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35148480

RESUMEN

BACKGROUND: Saliva is an active carrier of SARS-CoV-2, and antimicrobial mouthrinses can be rendered less effective by saliva. Aerosol-generating procedures are commonplace in dentistry, and preprocedural mouthrinses and/or irrigation with effective SARS-CoV-2 virucidals should be tested in the presence of saliva. METHODS: With the use of an in vitro virucidal suspension test, molecular iodine oral rinse was assayed against SARS-CoV-2 with and without saliva after 30- and 60-second exposures to the rinse. Log10 infectivity and consequent virus reductions were calculated at each timepoint. RESULTS: Virus load reductions with saliva were 4.75 log10 after 30 seconds of exposure and ≥5.25 log10 after 60 seconds. Without saliva, infectivity was reduced by 5.00 log10 and ≥5.75 log10 after 30 and 60 seconds, respectively. CONCLUSIONS: Molecular iodine oral rinse appears effective in reducing SARS-CoV-2 infectivity in vitro and, to date, appears to be the most effective oral rinse tested both in the presence of and without human saliva.


Asunto(s)
COVID-19 , Yodo , Humanos , Antisépticos Bucales/farmacología , SARS-CoV-2 , Saliva
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA