Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Dev Biol ; 389(2): 182-91, 2014 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-24607366

RESUMEN

The vertebrate heart undergoes early complex morphologic events in order to develop key cardiac structures that regulate its overall function (Fahed et al., 2013). Although many genetic factors that participate in patterning the heart have been elucidated (Tu and Chi, 2012), the cellular events that drive cardiac morphogenesis have been less clear. From a chemical genetic screen to identify cellular pathways that control cardiac morphogenesis in zebrafish, we observed that inhibition of the Rho signaling pathways resulted in failure to form the atrioventricular canal and loop the linear heart tube. To identify specific Rho proteins that may regulate this process, we analyzed cardiac expression profiling data and discovered that RhoU was expressed at the atrioventricular canal during the time when it forms. Loss of RhoU function recapitulated the atrioventricular canal and cardiac looping defects observed in the ROCK inhibitor treated zebrafish. Similar to its family member RhoV/Chp (Tay et al., 2010), we discovered that RhoU regulates the cell junctions between cardiomyocytes through the Arhgef7b/Pak kinase pathway in order to guide atrioventricular canal development and cardiac looping. Inhibition of this pathway resulted in similar underlying cardiac defects and conversely, overexpression of a PAK kinase was able to rescue the loss of RhoU cardiac defect. Finally, we found that Wnt signaling, which has been implicated in atrioventricular canal development (Verhoeven et al., 2011), may regulate the expression of RhoU at the atrioventricular canal. Overall, these findings reveal a cardiac developmental pathway involving RhoU/Arhgef7b/Pak signaling, which helps coordinate cell junction formation between atrioventricular cardiomyocytes to promote cell adhesiveness and cell shapes during cardiac morphogenesis. Failure to properly form these cell adhesions during cardiac development may lead to structural heart defects and mechanistically account for the cellular events that occur in certain human congenital heart diseases.


Asunto(s)
Corazón/embriología , Morfogénesis , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Pez Cebra/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Animales , Tipificación del Cuerpo/efectos de los fármacos , Tipificación del Cuerpo/genética , Encéfalo/efectos de los fármacos , Encéfalo/enzimología , Encéfalo/patología , Cadherinas/metabolismo , Adhesión Celular/efectos de los fármacos , Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Forma de la Célula/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Corazón/efectos de los fármacos , Atrios Cardíacos/efectos de los fármacos , Atrios Cardíacos/enzimología , Atrios Cardíacos/patología , Ventrículos Cardíacos/efectos de los fármacos , Ventrículos Cardíacos/enzimología , Ventrículos Cardíacos/patología , Humanos , Morfogénesis/efectos de los fármacos , Morfogénesis/genética , Morfolinos/farmacología , Mutación/genética , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/enzimología , Miocitos Cardíacos/patología , Fenotipo , Vía de Señalización Wnt/efectos de los fármacos , Proteínas de Pez Cebra/genética , Proteínas de Unión al GTP rho/genética
2.
Cell Stem Cell ; 31(1): 39-51.e6, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38181749

RESUMEN

Research on human cerebellar development and disease has been hampered by the need for a human cell-based system that recapitulates the human cerebellum's cellular diversity and functional features. Here, we report a human organoid model (human cerebellar organoids [hCerOs]) capable of developing the complex cellular diversity of the fetal cerebellum, including a human-specific rhombic lip progenitor population that have never been generated in vitro prior to this study. 2-month-old hCerOs form distinct cytoarchitectural features, including laminar organized layering, and create functional connections between inhibitory and excitatory neurons that display coordinated network activity. Long-term culture of hCerOs allows healthy survival and maturation of Purkinje cells that display molecular and electrophysiological hallmarks of their in vivo counterparts, addressing a long-standing challenge in the field. This study therefore provides a physiologically relevant, all-human model system to elucidate the cell-type-specific mechanisms governing cerebellar development and disease.


Asunto(s)
Cerebelo , Células de Purkinje , Humanos , Lactante , Metencéfalo , Organoides
3.
bioRxiv ; 2023 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-36824745

RESUMEN

Age-related hearing loss (ARHL) is the most common cause of hearing loss and one of the most prevalent conditions affecting the elderly worldwide. Despite evidence from our lab and others about its polygenic nature, little is known about the specific genes, cell types and pathways involved in ARHL, impeding the development of therapeutic interventions. In this manuscript, we describe, for the first time, the complete cell-type specific transcriptome of the aging mouse cochlea using snRNA-seq in an outbred mouse model in relation to auditory threshold variation. Cochlear cell types were identified using unsupervised clustering and annotated via a three-tiered approach - first by linking to expression of known marker genes, then using the NS-Forest algorithm to select minimum cluster-specific marker genes and reduce dimensional feature space for statistical comparison of our clusters with existing publicly-available data sets on the gEAR website (https://umgear.org/), and finally, by validating and refining the annotations using Multiplexed Error Robust Fluorescence In Situ Hybridization (MERFISH) and the cluster-specific marker genes as probes. We report on 60 unique cell-types expanding the number of defined cochlear cell types by more than two times. Importantly, we show significant specific cell type increases and decreases associated with loss of hearing acuity implicating specific subsets of hair cell subtypes, ganglion cell subtypes, and cell subtypes withing the stria vascularis in this model of ARHL. These results provide a view into the cellular and molecular mechanisms responsible for age-related hearing loss and pathways for therapeutic targeting.

4.
Front Cell Neurosci ; 17: 1256619, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38094513

RESUMEN

Age-related hearing loss (ARHL) is the most common cause of hearing loss and one of the most prevalent conditions affecting the elderly worldwide. Despite evidence from our lab and others about its polygenic nature, little is known about the specific genes, cell types, and pathways involved in ARHL, impeding the development of therapeutic interventions. In this manuscript, we describe, for the first time, the complete cell-type specific transcriptome of the aging mouse cochlea using snRNA-seq in an outbred mouse model in relation to auditory threshold variation. Cochlear cell types were identified using unsupervised clustering and annotated via a three-tiered approach-first by linking to expression of known marker genes, then using the NSForest algorithm to select minimum cluster-specific marker genes and reduce dimensional feature space for statistical comparison of our clusters with existing publicly-available data sets on the gEAR website, and finally, by validating and refining the annotations using Multiplexed Error Robust Fluorescence In Situ Hybridization (MERFISH) and the cluster-specific marker genes as probes. We report on 60 unique cell-types expanding the number of defined cochlear cell types by more than two times. Importantly, we show significant specific cell type increases and decreases associated with loss of hearing acuity implicating specific subsets of hair cell subtypes, ganglion cell subtypes, and cell subtypes within the stria vascularis in this model of ARHL. These results provide a view into the cellular and molecular mechanisms responsible for age-related hearing loss and pathways for therapeutic targeting.

5.
J Leukoc Biol ; 110(6): 1225-1239, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34730254

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease-2019 (COVID-19), a respiratory disease that varies in severity from mild to severe/fatal. Several risk factors for severe disease have been identified, notably age, male sex, and pre-existing conditions such as diabetes, obesity, and hypertension. Several advancements in clinical care have been achieved over the past year, including the use of corticosteroids (e.g., corticosteroids) and other immune-modulatory treatments that have now become standard of care for patients with acute severe COVID-19. While the understanding of the mechanisms that underlie increased disease severity with age has improved over the past few months, it remains incomplete. Furthermore, the molecular impact of corticosteroid treatment on host response to acute SARS-CoV-2 infection has not been investigated. In this study, a cross-sectional and longitudinal analysis of Ab, soluble immune mediators, and transcriptional responses in young (65 ≤ years) and aged (≥ 65 years) diabetic males with obesity hospitalized with acute severe COVID-19 was conducted. Additionally, the transcriptional profiles in samples obtained before and after corticosteroids became standard of care were compared. The analysis indicates that severe COVID-19 is characterized by robust Ab responses, heightened systemic inflammation, increased expression of genes related to inflammatory and pro-apoptotic processes, and reduced expression of those important for adaptive immunity regardless of age. In contrast, COVID-19 patients receiving steroids did not show high levels of systemic immune mediators and lacked transcriptional indicators of heightened inflammatory and apoptotic responses. Overall, these data suggest that inflammation and cell death are key drivers of severe COVID-19 pathogenesis in the absence of corticosteroid therapy.


Asunto(s)
Corticoesteroides/uso terapéutico , Tratamiento Farmacológico de COVID-19 , COVID-19/inmunología , Inflamación/inmunología , Transcriptoma/efectos de los fármacos , Adulto , Anciano , Estudios Transversales , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , SARS-CoV-2 , Transcriptoma/inmunología
6.
Nat Biomed Eng ; 3(2): 147-157, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30923642

RESUMEN

Dilated cardiomyopathy (DCM) is a leading cause of morbidity and mortality worldwide; yet how genetic variation and environmental factors impact DCM heritability remains unclear. Here, we report that compound genetic interactions between DNA sequence variants contribute to the complex heritability of DCM. By using genetic data from a large family with a history of DCM, we discovered that heterozygous sequence variants in the TROPOMYOSIN 1 (TPM1) and VINCULIN (VCL) genes cose-gregate in individuals affected by DCM. In vitro studies of patient-derived and isogenic human-pluripotent-stem-cell-derived cardio-myocytes that were genome-edited via CRISPR to create an allelic series of TPM1 and VCL variants revealed that cardiomyocytes with both TPM1 and VCL variants display reduced contractility and sarcomeres that are less organized. Analyses of mice genetically engineered to harbour these human TPM1 and VCL variants show that stress on the heart may also influence the variable penetrance and expressivity of DCM-associated genetic variants in vivo. We conclude that compound genetic variants can interact combinatorially to induce DCM, particularly when influenced by other disease-provoking stressors.


Asunto(s)
Cardiomiopatía Dilatada/genética , Predisposición Genética a la Enfermedad , Variación Genética , Animales , Cardiomiopatía Dilatada/fisiopatología , Matriz Extracelular/metabolismo , Femenino , Regulación de la Expresión Génica , Humanos , Patrón de Herencia/genética , Masculino , Ratones , Modelos Biológicos , Contracción Muscular/genética , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Linaje , Células Madre Pluripotentes/metabolismo , Regulación hacia Arriba/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA