Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Cell Biochem ; 122(5): 577-597, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33417295

RESUMEN

Breast cancer continues to be a serious public health problem. The role of the hedgehog pathway in normal development of the mammary gland as well as in carcinogenesis and progression of breast cancer is the subject of intense investigation, revealing functional interactions with cell surface heparan sulfate. Nevertheless, its influence on breast cancer prognosis, and its relation to specific sulfation motifs in heparan sulfate have only been poorly studied in large patient cohorts. Using the public database KMplotter that includes gene expression and survival data of 3951 patients, we found that the higher expression of SHH, HHAT, PTCH1, GLI1, GLI2, and GLI3 positively influences breast cancer prognosis. Stratifying patients according to the expression of hormone receptors, histological grade, lymph node metastasis, and systemic therapy, we observed that GLI1, GLI2, and GLI3 expression, as well as co-expression of SHH and ELP1 were associated with worse relapse-free survival in patients with HER2-positive tumors. Moreover, GLI1 expression in progesterone receptor-negative tumors and GLI3 expression in grade 3 tumors correlated with poor prognosis. SHH, in a panel of cell lines representing different breast cancer subtypes, and HHAT, PTCH1, GLI1, GLI2, and GLI3 were mostly expressed in cell lines classified as HER2-positive and basal-like. Expression of SHH, HHAT, GLI2, and GLI3 was differentially affected by overexpression of the heparan sulfate sulfotransferases HS2ST1 and HS3ST2 in vitro. Although high HS2ST1 expression was associated with poor prognosis in KMplotter analysis, high levels of HS3ST2 were associated with a good prognosis, except for ER-positive breast cancer. We suggest the GLI transcription factors as possible markers for the diagnosis, treatment, and prognosis of breast cancer especially in HER2-positive tumors, but also in progesterone receptor-negative and grade-3 tumors. The pathway interaction and prognostic impact of specific heparan sulfate sulfotransferases provide novel perspectives regarding a therapeutical targeting of the hedgehog pathway in breast cancer.


Asunto(s)
Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Proteínas Hedgehog/metabolismo , Femenino , Heparitina Sulfato , Humanos , Proteínas del Tejido Nervioso/metabolismo , Receptor Patched-1/metabolismo , Pronóstico , Factores de Elongación Transcripcional/metabolismo , Proteína con Dedos de Zinc GLI1/metabolismo , Proteína Gli2 con Dedos de Zinc/metabolismo , Proteína Gli3 con Dedos de Zinc/metabolismo
2.
Int J Mol Sci ; 22(11)2021 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-34070901

RESUMEN

Glycosaminoglycans (GAGs) and proteoglycans (PGs) are major components of the glycocalyx. The secreted GAG and CD44 ligand hyaluronic acid (HA), and the cell surface PG syndecan-1 (Sdc-1) modulate the expression and activity of cytokines, chemokines, growth factors, and adhesion molecules, acting as critical regulators of tumor cell behavior. Here, we studied the effect of Sdc-1 siRNA depletion and HA treatment on hallmark processes of cancer in breast cancer cell lines of different levels of aggressiveness. We analyzed HA synthesis, and parameters relevant to tumor progression, including the stem cell phenotype, Wnt signaling constituents, cell cycle progression and apoptosis, and angiogenic markers in luminal MCF-7 and triple-negative MDA-MB-231 cells. Sdc-1 knockdown enhanced HAS-2 synthesis and HA binding in MCF-7, but not in MDA-MB-231 cells. Sdc-1-depleted MDA-MB-231 cells showed a reduced CD24-/CD44+ population. Furthermore, Sdc-1 depletion was associated with survival signals in both cell lines, affecting cell cycle progression and apoptosis evasion. These changes were linked to the altered expression of KLF4, MSI2, and miR-10b and differential changes in Erk, Akt, and PTEN signaling. We conclude that Sdc-1 knockdown differentially affects HA metabolism in luminal and triple-negative breast cancer model cell lines and impacts the stem phenotype, cell survival, and angiogenic factors.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Glicocálix/metabolismo , Ácido Hialurónico/metabolismo , Sindecano-1/genética , Neoplasias de la Mama Triple Negativas/genética , Vía de Señalización Wnt/genética , Apoptosis/efectos de los fármacos , Apoptosis/genética , Antígeno CD24/genética , Antígeno CD24/metabolismo , Ciclo Celular/efectos de los fármacos , Ciclo Celular/genética , Línea Celular Tumoral , Bases de Datos Factuales , Femenino , Glicocálix/química , Glicocálix/efectos de los fármacos , Humanos , Receptores de Hialuranos/genética , Receptores de Hialuranos/metabolismo , Hialuronano Sintasas/genética , Hialuronano Sintasas/metabolismo , Ácido Hialurónico/farmacología , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Células MCF-7 , MicroARNs/genética , MicroARNs/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Unión Proteica , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Análisis de Supervivencia , Sindecano-1/antagonistas & inhibidores , Sindecano-1/metabolismo , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/mortalidad , Neoplasias de la Mama Triple Negativas/patología
3.
Adv Exp Med Biol ; 1221: 97-135, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32274708

RESUMEN

The cell surface heparan sulfate proteoglycan Syndecan-1 acts as an important co-receptor for receptor tyrosine kinases and chemokine receptors, and as an adhesion receptor for structural glycoproteins of the extracellular matrix. It serves as a substrate for heparanase, an endo-ß-glucuronidase that degrades specific domains of heparan sulfate carbohydrate chains and thereby alters the functional status of the proteoglycan and of Syndecan-1-bound ligands. Syndecan-1 and heparanase show multiple levels of functional interactions, resulting in mutual regulation of their expression, processing, and activity. These interactions are of particular relevance in the context of inflammation and malignant disease. Studies in animal models have revealed a mechanistic role of Syndecan-1 and heparanase in the regulation of contact allergies, kidney inflammation, multiple sclerosis, inflammatory bowel disease, and inflammation-associated tumorigenesis. Moreover, functional interactions between Syndecan-1 and heparanase modulate virtually all steps of tumor progression as defined in the Hallmarks of Cancer. Due to their prognostic value in cancer, and their mechanistic involvement in tumor progression, Syndecan-1 and heparanase have emerged as important drug targets. Data in preclinical models and preclinical phase I/II studies have already yielded promising results that provide a translational perspective.


Asunto(s)
Glucuronidasa , Inflamación , Neoplasias , Sindecano-1 , Animales , Heparitina Sulfato/metabolismo , Humanos , Inflamación/enzimología , Inflamación/metabolismo , Neoplasias/enzimología , Neoplasias/metabolismo
4.
Mar Drugs ; 17(6)2019 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-31212795

RESUMEN

Heparin or highly sulfated heparan sulfate (HS) has been described in different invertebrates. In ascidians (Chordata-Tunicata), these glycosaminoglycans occur in intracellular granules of oocyte accessory cells and circulating basophil-like cells, resembling mammalian mast cells and basophils, respectively. HS is also a component of the basement membrane of different ascidian organs. We have analyzed an HS isolated from the internal organs of the ascidian Phallusia nigra, using solution 1H/13C NMR spectroscopy, which allowed us to identify and quantify the monosaccharides found in this glycosaminoglycan. A variety of α-glucosamine units with distinct degrees of sulfation and N-acetylation were revealed. The hexuronic acid units occur both as α-iduronic acid and ß-glucuronic acid, with variable sulfation at the 2-position. A peculiar structural aspect of the tunicate HS is the high content of 2-sulfated ß-glucuronic acid, which accounts for one-third of the total hexuronic acid units. Another distinct aspect of this HS is the occurrence of high content of N-acetylated α-glucosamine units bearing a sulfate group at position 6. The unique ascidian HS is a potent inhibitor of the binding of human colon adenocarcinoma cells to immobilized P-selectin, being 11-fold more potent than mammalian heparin, but almost ineffective as an anticoagulant. Thus, the components of the HS structure required to inhibit coagulation and binding of tumor cells to P-selectin are distinct. Our results also suggest that the regulation of the pathway involved in the biosynthesis of glycosaminoglycans suffered variations during the evolution of chordates.


Asunto(s)
Adenocarcinoma/metabolismo , Anticoagulantes/metabolismo , Neoplasias del Colon/metabolismo , Glucuronatos/metabolismo , Heparitina Sulfato/química , Heparitina Sulfato/metabolismo , Selectina-P/metabolismo , Urocordados/metabolismo , Animales , Anticoagulantes/química , Línea Celular Tumoral , Colon/metabolismo , Ácido Glucurónico/metabolismo , Glicosaminoglicanos/metabolismo , Heparina/metabolismo , Humanos
5.
Glycobiology ; 28(6): 427-434, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29522135

RESUMEN

Metastasis is responsible for the majority of cancer-associated deaths, though only a very small number of tumor cells are able to efficiently complete all the steps of that process. Tumor cell survival in the bloodstream is one of the limiting aspects of the metastatic cascade. The formation of tumor cell-platelet complexes that promote tumor cell survival is facilitated by the binding of P-selectin on activated platelets to sialyl Lewis-containing oligosaccharides on the surface of tumor cells. Inhibition of this interaction has been shown to attenuate metastasis. Heparin is a potent selectin inhibitor and is capable to block platelet-tumor cell complex formation, thereby attenuating metastasis. Similarly, other sulfated polysaccharides isolated from marine invertebrates attenuate metastasis by a P-selectin-mediated mechanism. In this work, we investigated the selectin-dependent antimetastatic activity of sea urchin sulfated polysaccharides with slight structural differences: a sulfated fucan from Strongylocentrotus franciscanus; a sulfated fucan from Strongylocentrotus droebachiensis; and a sulfated galactan from Echinometra lucunter. The results demonstrate that these fucans and the galactan have different antiselectin activities despite being very similar molecules. Therefore, they may be interesting tools for studies on the structure-function relationship or even for future treatments.


Asunto(s)
Antineoplásicos/uso terapéutico , Galactanos/uso terapéutico , Neoplasias Experimentales/tratamiento farmacológico , Polisacáridos/uso terapéutico , Selectinas/metabolismo , Animales , Antineoplásicos/farmacología , Plaquetas/efectos de los fármacos , Línea Celular Tumoral , Galactanos/farmacología , Humanos , Ratones , Ratones Endogámicos C57BL , Metástasis de la Neoplasia , Neoplasias Experimentales/patología , Polisacáridos/farmacología , Unión Proteica , Erizos de Mar/química
6.
Glycobiology ; 25(4): 386-93, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25367817

RESUMEN

Inflammation and cancer are related pathologies acting synergistically to promote tumor progression. In both, hematogenous metastasis and inflammation, P-selectin participates in interactions involving tumor cells, platelets, leukocytes and endothelium. Heparin has been shown to inhibit P-selectin and as a consequence it blunts metastasis and inflammation. Some heparin analogs obtained from marine invertebrates are P-selectin inhibitors and do not induce bleeding effects. The present work focuses on the P-selectin blocking activity of a unique heparan sulfate (HS) from the bivalve mollusk Nodipecten nodosus. Initially, we showed that the mollusk HS inhibited LS180 colon carcinoma cell adhesion to immobilized P-selectin in a dose-dependent manner. In addition, we demonstrated that this glycan attenuates leukocyte rolling on activated endothelium and inflammatory cell recruitment in thioglycollate-induced peritonitis in mice. Biochemical analysis indicated that the invertebrate glycan also inhibits heparanase, a key player in cell invasion and metastasis. Experimental metastasis of Lewis lung carcinoma cells was drastically attenuated by the mollusk HS through a mechanism involving inhibition of platelet-tumor-cell complex formation in blood vessels. These data suggest that the mollusk HS is a potential alternative to heparin for inhibiting P-selectin-mediated events such as metastasis and inflammatory cell recruitment.


Asunto(s)
Antineoplásicos/farmacología , Carcinoma Pulmonar de Lewis/tratamiento farmacológico , Heparitina Sulfato/farmacología , Neoplasias Pulmonares/prevención & control , Animales , Anticoagulantes/farmacología , Antineoplásicos/uso terapéutico , Plaquetas/efectos de los fármacos , Plaquetas/fisiología , Carcinoma Pulmonar de Lewis/secundario , Adhesión Celular , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Glucuronidasa/antagonistas & inhibidores , Glucuronidasa/química , Heparitina Sulfato/uso terapéutico , Humanos , Concentración 50 Inhibidora , Rodamiento de Leucocito/efectos de los fármacos , Neoplasias Pulmonares/secundario , Moluscos , Trasplante de Neoplasias , Selectina-P/antagonistas & inhibidores , Selectina-P/metabolismo
7.
Methods Mol Biol ; 2303: 93-109, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34626373

RESUMEN

Sulfate polysaccharides with unique structures of the chondroitin/dermatan and heparin/heparan families of sulfated glycosaminoglycans have been described in several species of ascidians (Chordata-Tunicata). These unique sulfated glycans have been isolated from the ascidians and characterized by biochemical and spectroscopic methods. The ascidian glycans can be extracted by different tissues or cells by proteolytic digestion followed by cetylpyridinium chloride/ethanol precipitation. The total glycans are then fractionated by ion-exchange chromatography on DEAE-cellulose and/or Mono Q (HR 5/5) columns. Alternatively, precipitation with different ethanol concentrations can be employed. An initial analysis of the purified ascidian glycans is carried out by agarose gel electrophoresis on diaminopropane/acetate buffer, before or after digestion with specific glycosaminoglycan lyases or deaminative cleavage with nitrous acid. The disaccharides formed by exhaustive degradation of the glycans are purified by gel-filtration chromatography on a Superdex Peptide column and analyzed by HPLC on a strong ion-exchange Sax Spherisorb column. 1H- or 13C-nuclear magnetic resonance spectroscopy in one or two dimensions is used to confirm the structure of the intact glycans.


Asunto(s)
Cordados , Urocordados , Animales , Sulfatos de Condroitina , Dermatán Sulfato , Etanol , Glicosaminoglicanos , Polisacáridos , Sulfatos
8.
Front Cell Dev Biol ; 8: 559554, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33102470

RESUMEN

Heparan sulfate (HS) is a glycosaminoglycan found mainly in its protein-conjugated form at the cell surface and the extracellular matrix. Its high sulfation degree mediates functional interactions with positively charged amino acids in proteins. 2-O sulfation of iduronic acid and 3-O sulfation of glucosamine in HS are mediated by the sulfotransferases HS2ST and HS3ST, respectively, which are dysregulated in several cancers. Both sulfotransferases regulate breast cancer cell viability and invasion, but their role in cancer stem cells (CSCs) is unknown. Breast CSCs express characteristic markers such as CD44+/CD24-/low , CD133 and ALDH1 and are involved in tumor initiation, formation, and recurrence. We studied the influence of HS2ST1 and HS3ST2 overexpression on the CSC phenotype in breast cancer cell lines representative of the triple-negative (MDA-MB-231) and hormone-receptor positive subtype (MCF-7). The CD44+/CD24-/low phenotype was significantly reduced in MDA-MB-231 cells after overexpression of both enzymes, remaining unaltered in MCF-7 cells. ALDH1 activity was increased after HS2ST1 and HS3ST2 overexpression in MDA-MB-231 cells and reduced after HS2ST1 overexpression in MCF-7 cells. Colony and spheroid formation were increased after HS2ST1 and HS3ST2 overexpression in MCF-7 cells. Moreover, MDA-MB-231 cells overexpressing HS2ST1 formed more colonies and could not generate spheres. The phenotypic changes were associated with complex changes in the expression of the stemness-associated notch and Wnt-signaling pathways constituents, syndecans, heparanase and Sulf1. The results improve our understanding of breast CSC function and mark a subtype-specific impact of HS modifications on the CSC phenotype of triple-negative and hormone receptor positive breast cancer model cell lines.

9.
Cancers (Basel) ; 12(6)2020 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-32466418

RESUMEN

Although metastasis is the primary cause of death in patients with malignant solid tumors, efficient anti-metastatic therapies are not clinically available currently. Sulfated glycosaminoglycans from marine sources have shown promising pharmacological effects, acting on different steps of the metastatic process. Oversulfated dermatan sulfates from ascidians are effective in preventing metastasis by inhibition of P-selectin, a platelet surface protein involved in the platelet-tumor cell emboli formation. We report in this work that the heparan sulfate isolated from the viscera of the ascidian Phallusia nigra drastically attenuates metastases of colon carcinoma cells in mice. Our in vitro and in vivo assessments demonstrate that the P. nigra glycan has very low anticoagulant and antithrombotic activities and a reduced hypotension potential, although it efficiently prevented metastasis. Therefore, it may be a promising candidate for the development of a novel anti-metastatic drug.

10.
Biomed Res Int ; 2015: 453801, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26558271

RESUMEN

The metastatic disease is one of the main consequences of tumor progression, being responsible for most cancer-related deaths worldwide. This review intends to present and discuss data on the relationship between integrins and heparan sulfate proteoglycans in health and cancer progression. Integrins are a family of cell surface transmembrane receptors, responsible for cell-matrix and cell-cell adhesion. Integrins' main functions include cell adhesion, migration, and survival. Heparan sulfate proteoglycans (HSPGs) are cell surface molecules that play important roles as cell receptors, cofactors, and overall direct or indirect contributors to cell organization. Both molecules can act in conjunction to modulate cell behavior and affect malignancy. In this review, we will discuss the different contexts in which various integrins, such as α5, αV, ß1, and ß3, interact with HSPGs species, such as syndecans and perlecans, affecting tissue homeostasis.


Asunto(s)
Movimiento Celular/fisiología , Proteoglicanos de Heparán Sulfato/metabolismo , Integrinas/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Animales , Adhesión Celular/fisiología , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA