Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Tob Control ; 30(5): 485-491, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-32587113

RESUMEN

INTRODUCTION: The diversity of e-liquids along with higher powered e-cigarette nicotine delivery devices are increasing. This study evaluated the effect of voltage and e-liquid composition on particle size, nicotine deposition in a human oral-trachea cast model and generation of carbonyls. METHODS: Nineteen e-liquids were evaluated for 30 common chemicals by gas chromatography-mass spectrometry (GC-MS). E-cigarette aerosols containing nicotine (1.2%) were generated at 4 and 5 volts for assessment of particle size distribution using Aerodynamic Particle Sizer (APS), Fast Mobility Particle Size (FMPS) and an In-Tox cascade impactor and nicotine deposition by GC-MS. Carbonyl formation in aerosols was assessed by liquid chromatography tandem triple-quad mass spectrometry. RESULTS: Total chemical burden ranged from 0.35 to 14.6 mg/mL with ethyl maltol present in all e-liquids. Increasing voltage was associated with an increase in median size of aerosol particles and the deposition of nicotine in the oral cast. Two e-liquids caused a 2.5-fold to 5-fold increase in nicotine deposition independent of particle size and voltage. Increasing voltage caused an increase in formaldehyde, acetaldehyde and acrolein in the presence and absence of nicotine. Most striking, aerosols from several e-liquids significantly increased levels of acetaldehyde and acrolein compared with unflavoured. CONCLUSIONS: Increasing voltage and composition of e-liquid can increase the exposure of the oral pharynx and bronchial airways to carbonyls that can react with DNA to generate adducts, induce oxidative stress, inflammation and cell death. The elevated nicotine and carbonyls readily enter the circulation where they can also cause cardiovascular stress. The growing popularity of higher voltage e-cigarette delivery devices will likely further elevate health risks from chronic exposure to these complex aerosols.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Productos de Tabaco , Aerosoles , Humanos , Boca , Nicotina
2.
Br J Cancer ; 122(8): 1194-1204, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32103148

RESUMEN

BACKGROUND: Epigenetic therapy through demethylation of 5-methylcytosine has been largely ineffective in treating lung cancer, most likely due to poor tissue distribution with oral or subcutaneous delivery of drugs such as 5-azacytidine (5AZA). An inhalable, stable dry powder formulation of 5AZA was developed. METHODS: Pharmacokinetics of inhaled dry powder and aqueous formulations of 5AZA were compared to an injected formulation. Efficacy studies and effect of therapy on the epigenome were conducted in an orthotopic rat lung cancer model for inhaled formulations. RESULTS: Inhaled dry powder 5AZA showed superior pharmacokinetic properties in lung, liver, brain and blood compared to the injected formulation and for all tissues except lung compared to an inhaled aqueous formulation. Only dry powder 5AZA was detected in brain (~4-h half-life). Inhaled dry powder was superior to inhaled aqueous 5AZA in reducing tumour burden 70-95%. Superiority of inhaled 5AZA dry powder was linked to effectively reprogramming the cancer genome through demethylation and gene expression changes in cancer signalling and immune pathways. CONCLUSIONS: These findings could lead to widespread use of this drug as the first inhaled dry powder therapeutic for treating local and metastatic lung cancer, for adjuvant therapy, and in combination with immunotherapy to improve patient survival.


Asunto(s)
Azacitidina/administración & dosificación , Neoplasias Pulmonares/tratamiento farmacológico , Administración por Inhalación , Animales , Antígenos de Neoplasias/análisis , Azacitidina/farmacocinética , Desmetilación , Composición de Medicamentos , Epigenoma , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Masculino , Polvos , Ratas , Ratas Sprague-Dawley , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Am J Respir Cell Mol Biol ; 60(6): 659-666, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30562054

RESUMEN

Altered expression of syndecan-2 (SDC2), a heparan sulfate proteoglycan, has been associated with diverse types of human cancers. However, the mechanisms by which SDC2 may contribute to the pathobiology of lung adenocarcinoma have not been previously explored. SDC2 levels were measured in human lung adenocarcinoma samples and lung cancer tissue microarrays using immunohistochemistry and real-time PCR. To understand the role of SDC2 in vitro, SDC2 was silenced or overexpressed in A549 lung adenocarcinoma cells. The invasive capacity of cells was assessed using Matrigel invasion assays and measuring matrix metalloproteinase (MMP) 9 expression. Finally, we assessed tumor growth and metastasis of SDC2-deficient A549 cells in a xenograft tumor model. SDC2 expression was upregulated in malignant epithelial cells and macrophages obtained from human lung adenocarcinomas. Silencing of SDC2 decreased MMP9 expression and attenuated the invasive capacity of A549 lung adenocarcinoma cells. The inhibitory effect of SDC2 silencing on MMP9 expression and cell invasion was reversed by overexpression of MMP9 and syntenin-1. SDC2 silencing attenuated NF-κB p65 subunit nuclear translocation and its binding to the MMP9 promoter, which were restored by overexpression of syntenin-1. SDC2 silencing in vivo reduced tumor mass volume and metastasis. These findings suggest that SDC2 plays an important role in the invasive properties of lung adenocarcinoma cells and that its effects are mediated by syntenin-1. Thus, inhibiting SDC2 expression or activity could serve as a potential therapeutic target to treat lung adenocarcinoma.


Asunto(s)
Adenocarcinoma del Pulmón/patología , Neoplasias Pulmonares/patología , Sindecano-2/metabolismo , Células A549 , Adenocarcinoma del Pulmón/genética , Animales , Núcleo Celular/metabolismo , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Silenciador del Gen , Humanos , Neoplasias Pulmonares/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones SCID , Invasividad Neoplásica , Sinteninas/metabolismo , Factor de Transcripción ReIA/metabolismo , Regulación hacia Arriba/genética
4.
J Immunol ; 198(10): 3815-3822, 2017 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-28381639

RESUMEN

Embryonic development is highly sensitive to xenobiotic toxicity and in utero exposure to environmental toxins affects physiological responses of the progeny. In the United States, the prevalence of allergic asthma (AA) is inexplicably rising and in utero exposure to cigarette smoke increases the risk of AA and bronchopulmonary dysplasia (BPD) in children and animal models. We reported that gestational exposure to sidestream cigarette smoke (SS), or secondhand smoke, promoted nicotinic acetylcholine receptor-dependent exacerbation of AA and BPD in mice. Recently, perinatal nicotine injections in rats were reported to induce peroxisome proliferator-activated receptor γ-dependent transgenerational transmission of asthma. Herein, we show that first generation and second generation progeny from gestationally SS-exposed mice exhibit exacerbated AA and BPD that is not dependent on the decrease in peroxisome proliferator-activated receptor γ levels. Lungs from these mice show strong eosinophilic infiltration, excessive Th2 polarization, marked airway hyperresponsiveness, alveolar simplification, decreased lung compliance, and decreased lung angiogenesis. At the molecular level, these changes are associated with increased RUNX3 expression, alveolar cell apoptosis, and the antiangiogenic factor GAX, and decreased expression of HIF-1α and proangiogenic factors NF-κB and VEGFR2 in the 7-d first generation and second generation lungs. Moreover, the lungs from these mice exhibit lower levels of microRNA (miR)-130a and increased levels of miR-16 and miR-221. These miRs regulate HIF-1α-regulated apoptotic, angiogenic, and immune pathways. Thus the intergenerational effects of gestational SS involve epigenetic regulation of HIF-1α through specific miRs contributing to increased incidence of AA and BPD in the progenies.


Asunto(s)
Asma/etiología , Asma/genética , Displasia Broncopulmonar/etiología , Epigénesis Genética , Efectos Tardíos de la Exposición Prenatal/inmunología , Humo/efectos adversos , Contaminación por Humo de Tabaco/efectos adversos , Células Epiteliales Alveolares/patología , Animales , Apoptosis , Asma/inmunología , Asma/fisiopatología , Displasia Broncopulmonar/inmunología , Displasia Broncopulmonar/fisiopatología , Subunidad alfa 3 del Factor de Unión al Sitio Principal/genética , Femenino , Proteínas de Homeodominio/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Pulmón/patología , Ratones , MicroARNs/genética , Subunidad p50 de NF-kappa B/genética , Factores de Crecimiento Nervioso , Neuropéptidos/genética , Nicotina/efectos adversos , PPAR gamma/genética , PPAR gamma/metabolismo , Embarazo , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Fumar/efectos adversos , Células Th2/inmunología
5.
Proc Natl Acad Sci U S A ; 110(47): 18946-51, 2013 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-24158479

RESUMEN

Smoking is a significant risk factor for lung cancer, the leading cause of cancer-related deaths worldwide. Although microRNAs are regulators of many airway gene-expression changes induced by smoking, their role in modulating changes associated with lung cancer in these cells remains unknown. Here, we use next-generation sequencing of small RNAs in the airway to identify microRNA 4423 (miR-4423) as a primate-specific microRNA associated with lung cancer and expressed primarily in mucociliary epithelium. The endogenous expression of miR-4423 increases as bronchial epithelial cells undergo differentiation into mucociliary epithelium in vitro, and its overexpression during this process causes an increase in the number of ciliated cells. Furthermore, expression of miR-4423 is reduced in most lung tumors and in cytologically normal epithelium of the mainstem bronchus of smokers with lung cancer. In addition, ectopic expression of miR-4423 in a subset of lung cancer cell lines reduces their anchorage-independent growth and significantly decreases the size of the tumors formed in a mouse xenograft model. Consistent with these phenotypes, overexpression of miR-4423 induces a differentiated-like pattern of airway epithelium gene expression and reverses the expression of many genes that are altered in lung cancer. Together, our results indicate that miR-4423 is a regulator of airway epithelium differentiation and that the abrogation of its function contributes to lung carcinogenesis.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Carcinogénesis/metabolismo , Diferenciación Celular/fisiología , Neoplasias Pulmonares/diagnóstico , MicroARNs/metabolismo , Mucosa Respiratoria/citología , Animales , Biomarcadores de Tumor/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Inmunohistoquímica , Hibridación in Situ , Neoplasias Pulmonares/genética , Ratones , MicroARNs/genética , Análisis por Micromatrices , Reacción en Cadena en Tiempo Real de la Polimerasa , Mucosa Respiratoria/metabolismo
6.
Carcinogenesis ; 35(6): 1248-57, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24398667

RESUMEN

Lung cancer in never smokers (NS) shows striking demographic, clinicopathological and molecular distinctions from the disease in smokers (S). Studies on selected genetic and epigenetic alterations in lung cancer identified that the frequency and profile of some abnormalities significantly differ by smoking status. This study compared the transcriptome of lung adenocarcinoma cell lines derived from S (n = 3) and NS (n = 3) each treated with vehicle (control), histone deacetylation inhibitor (trichostatin A) or DNA methylation inhibitor (5-aza-2'-deoxycytidine). Among 122 genes reexpressed following 5-aza-2'-deoxycytidine but not trichostatin A treatment in two or more cell lines (including 32 genes in S-only and 12 NS-only), methylation was validated for 80% (98/122 genes). After methylation analysis of 20 normal tissue samples and 14 additional non-small cell lung cancer cell lines (total 20), 39 genes frequently methylated in normal (>20%, 4/20) and 21 genes rarely methylated in non-small cell lung cancer (≤10%, 2/20) were excluded. The prevalence for methylation of the remaining 38 genes in lung adenocarcinomas from S (n = 97) and NS (n = 75) ranged from 8-89% and significantly differs between S and NS for CPEB1, CST6, EMILIN2, LAYN and MARVELD3 (P < 0.05). Furthermore, methylation of EMILIN2, ROBO3 and IGDCC4 was more prevalent in advanced (Stage II-IV, n = 61) than early (Stage I, n = 110) tumors. Knockdown of MARVELD3, one of the novel epigenetically silenced genes, by small interfering RNA significantly reduced anchorage-independent growth of lung cancer cells (P < 0.001). Collectively, this study has identified multiple, novel, epigenetically silenced genes in lung cancer and provides invaluable resources for the development of diagnostic and prognostic biomarkers.


Asunto(s)
Adenocarcinoma/genética , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Silenciador del Gen , Neoplasias Pulmonares/genética , Fumar , Adenocarcinoma/mortalidad , Adenocarcinoma/patología , Azacitidina/análogos & derivados , Azacitidina/farmacología , Línea Celular Tumoral , Islas de CpG , Metilación de ADN , Decitabina , Progresión de la Enfermedad , Epigénesis Genética/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Estudio de Asociación del Genoma Completo , Humanos , Neoplasias Pulmonares/mortalidad , Neoplasias Pulmonares/patología , Regiones Promotoras Genéticas , Reproducibilidad de los Resultados
7.
Int J Cancer ; 135(9): 2223-31, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-24668305

RESUMEN

The DNA methyltransferase (DNMT) inhibitor vidaza (5-Azacytidine) in combination with the histone deacetylase inhibitor entinostat has shown promise in treating lung cancer and this has been replicated in our orthotopic lung cancer model. However, the effectiveness of DNMT inhibitors against solid tumors is likely impacted by their limited stability and rapid inactivation by cytidine deaminase (CDA) in the liver. These studies were initiated to test the efficacy of SGI-110, a dinucleotide containing decitabine that is resistant to deamination by CDA, as a single agent and in combination with entinostat. Evaluation of in vivo plasma concentrations and pharmacokinetic properties of SGI-110 showed rapid conversion to decitabine and a plasma half-life of 4 hr. SGI-110 alone or in combination with entinostat reduced tumor burden of a K-ras/p53 mutant lung adenocarcinoma cell line (Calu6) engrafted orthotopically in nude rats by 35% and 56%, respectively. SGI-110 caused widespread demethylation of more than 300 gene promoters and microarray analysis revealed expression changes for 212 and 592 genes with SGI-110 alone or in combination with entinostat. Epigenetic therapy also induced demethylation and expression of cancer testis antigen genes that could sensitize tumor cells to subsequent immunotherapy. In the orthotopically growing tumors, highly significant gene expression changes were seen in key cancer regulatory pathways including induction of p21 and the apoptotic gene BIK. Moreover, SGI-110 in combination with entinostat caused widespread epigenetic reprogramming of EZH2-target genes. These preclinical in vivo findings demonstrate the clinical potential of SGI-110 for reducing lung tumor burden through reprogramming the epigenome.


Asunto(s)
Antineoplásicos/uso terapéutico , Azacitidina/análogos & derivados , Benzamidas/uso terapéutico , Epigénesis Genética/efectos de los fármacos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/prevención & control , Piridinas/uso terapéutico , Carga Tumoral/efectos de los fármacos , Animales , Protocolos de Quimioterapia Combinada Antineoplásica , Azacitidina/uso terapéutico , Biomarcadores de Tumor/genética , Perfilación de la Expresión Génica , Factores Inmunológicos/uso terapéutico , Neoplasias Pulmonares/patología , Masculino , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Mensajero/genética , Ratas , Ratas Desnudas , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
8.
Lung Cancer ; 179: 107180, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36989612

RESUMEN

OBJECTIVES: E-cigarettes are the most commonly used nicotine containing products among youth. In vitro studies support the potential for e-cigarettes to cause cellular stress in vivo; however, there have been no studies to address whether exposure to e-liquid aerosols can induce cell transformation, a process strongly associated with pre-malignancy. We examined whether weekly exposure of human bronchial epithelial cell (HBEC) lines to e-cigarette aerosols would induce transformation and concomitant changes in gene expression and promoter hypermethylation. MATERIALS AND METHODS: An aerosol delivery system exposed three HBEC lines to unflavored e-liquid with 1.2% nicotine, 3 flavored products with nicotine, or the Kentucky reference cigarette once a week for 12 weeks. Colony formation in soft agar, RNA-sequencing, and the EPIC Beadchip were used to evaluate transformation, genome-wide expression and methylation changes. RESULTS: Jamestown e-liquid aerosol induced transformation of HBEC2 and HBEC26, while unflavored and Blue Pucker transformed HBEC26. Cigarette smoke aerosol transformed HBEC4 and HBEC26 at efficiencies up to 3-fold greater than e-liquids. Transformed clones exhibited extensive reprogramming of the transcriptome with common and distinct gene expression changes observed between the cigarette and e-liquids. Transformation by e-liquids induced alterations in canonical pathways implicated in lung cancer that included axonal guidance and NRF2. Gene methylation, while prominent in cigarette-induced transformed clones, also affected hundreds of genes in HBEC2 transformed by Jamestown. Many genes with altered expression or epigenetic-mediated silencing were also affected in lung tumors from smokers. CONCLUSIONS: These studies show that exposure to e-liquid aerosols can induce a pre-malignant phenotype in lung epithelial cells. While the Food and Drug Administration banned the sale of flavored cartridge-based electric cigarettes, consumers switched to using flavored products through other devices. Our findings clearly support expanding studies to evaluate transformation potency for the major categories of e-liquid flavors to better inform risk from these complex mixtures.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Neoplasias Pulmonares , Productos de Tabaco , Humanos , Adolescente , Nicotina/metabolismo , Neoplasias Pulmonares/patología , Aerosoles y Gotitas Respiratorias , Células Epiteliales , Transformación Celular Neoplásica/patología
9.
Carcinogenesis ; 33(7): 1368-74, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22556270

RESUMEN

Despite decades of research in defining the health effects of low-dose (<100 mGy) ionizing photon radiation (LDR), the relationship between LDR and human cancer risk remains elusive. Because chemical carcinogens modify the tumor microenvironment, which is critical for cancer development, we investigated the role and mechanism of LDR in modulating the response of stromal cells to chemical carcinogen-induced lung cancer development. Secretion of proinflammatory cytokines such as interleukin-6 (IL-6), CXCL1 and CXCL5 from human lung fibroblasts was induced by cigarette-smoke carcinogen benzo[a]pyrene diol epoxide (BPDE), which was inhibited by a single dose of LDR. The activation of NF-κB, which is important for BPDE-induced IL-6 secretion, was also effectively suppressed by LDR. In addition, conditioned media from BPDE-treated fibroblasts activated STAT3 in the immortalized normal human bronchial epithelial cell line Beas-2B, which was blocked with an IL-6 neutralizing antibody. Conditioned medium from LDR-primed and BPDE-treated fibroblast showed diminished capacity in activating STAT3. Furthermore, IL-6 enhanced BPDE-induced Beas-2B cell transformation in vitro. These results suggest that LDR inhibits cigarette smoke-induced lung carcinogenesis by suppressing secretion of cytokines such as IL-6 from fibroblasts in lung tumor-prone microenvironment.


Asunto(s)
Bronquios/efectos de los fármacos , Carcinógenos/toxicidad , Interleucina-6/efectos de la radiación , Pulmón/efectos de la radiación , Humo , 7,8-Dihidro-7,8-dihidroxibenzo(a)pireno 9,10-óxido/toxicidad , Bronquios/citología , Transformación Celular Neoplásica , Relación Dosis-Respuesta en la Radiación , Células Epiteliales/efectos de los fármacos , Fibroblastos/efectos de la radiación , Rayos gamma , Humanos , Interleucina-6/metabolismo , Pulmón/metabolismo , Sistema de Señalización de MAP Quinasas , FN-kappa B/metabolismo , Nicotiana
10.
PLoS Genet ; 4(8): e1000162, 2008 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-18725933

RESUMEN

Hundreds of genes show aberrant DNA hypermethylation in cancer, yet little is known about the causes of this hypermethylation. We identified RIL as a frequent methylation target in cancer. In search for factors that influence RIL hypermethylation, we found a 12-bp polymorphic sequence around its transcription start site that creates a long allele. Pyrosequencing of homozygous tumors revealed a 2.1-fold higher methylation for the short alleles (P<0.001). Bisulfite sequencing of cancers heterozygous for RIL showed that the short alleles are 3.1-fold more methylated than the long (P<0.001). The comparison of expression levels between unmethylated long and short EBV-transformed cell lines showed no difference in expression in vivo. Electrophorectic mobility shift assay showed that the inserted region of the long allele binds Sp1 and Sp3 transcription factors, a binding that is absent in the short allele. Transient transfection of RIL allele-specific transgenes showed no effects of the additional Sp1 site on transcription early on. However, stable transfection of methylation-seeded constructs showed gradually decreasing transcription levels from the short allele with eventual spreading of de novo methylation. In contrast, the long allele showed stable levels of expression over time as measured by luciferase and approximately 2-3-fold lower levels of methylation by bisulfite sequencing (P<0.001), suggesting that the polymorphic Sp1 site protects against time-dependent silencing. Our finding demonstrates that, in some genes, hypermethylation in cancer is dictated by protein-DNA interactions at the promoters and provides a novel mechanism by which genetic polymorphisms can influence an epigenetic state.


Asunto(s)
Metilación de ADN , Polimorfismo Genético , Factor de Transcripción Sp1/metabolismo , Factor de Transcripción Sp3/metabolismo , Animales , Secuencia de Bases , Sitios de Unión , Línea Celular Transformada , Neoplasias del Colon/genética , Neoplasias del Colon/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Humanos , Proteínas con Dominio LIM , Leucemia/genética , Leucemia/metabolismo , Ratones , Células 3T3 NIH , Regiones Promotoras Genéticas , Ratas , Factor de Transcripción Sp1/genética , Factor de Transcripción Sp3/genética , Sitio de Iniciación de la Transcripción
11.
Toxicol Sci ; 184(1): 67-82, 2021 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-34390580

RESUMEN

Epidemiology studies link cigarillos and shisha tobacco (delivered through a hookah waterpipe) to increased risk for cardiopulmonary diseases. Here we performed a comparative chemical constituent analysis between 3 cigarettes, 3 cigarillos, and 8 shisha tobacco products. The potency for genotoxicity and oxidative stress of each product's generated total particulate matter (TPM) was also assessed using immortalized oral, lung, and cardiac cell lines to represent target tissues. Levels of the carcinogenic carbonyl formaldehyde were 32- to 95-fold greater, while acrolein was similar across the shisha aerosols generated by charcoal heating compared to cigarettes and cigarillos. Electric-mediated aerosol generation dramatically increased acrolein to levels exceeding those in cigarettes and cigarillos by up to 43-fold. Equivalent cytotoxic-mediated cell death and dose response for genotoxicity through induction of mutagenicity and DNA strand breaks was seen between cigarettes and cigarillos, while minimal to no effect was observed with shisha tobacco products. In contrast, increased potency of TPM from cigarillos compared to cigarettes for inducing oxidative stress via reactive oxygen radicals and lipid peroxidation across cell lines was evident, while positivity was seen for shisha tobacco products albeit at much lower levels. Together, these studies provide new insight into the potential harmful effects of cigarillos for causing tobacco-associated diseases. The high level of carbonyls in shisha products, that in turn is impacted by the heating mechanism, reside largely in the gas phase which will distribute throughout the respiratory tract and systemic circulation to likely increase genotoxic stress.


Asunto(s)
Pipas de Agua , Productos de Tabaco , Daño del ADN , Mutágenos/toxicidad , Humo/efectos adversos , Nicotiana/toxicidad , Productos de Tabaco/toxicidad
12.
Clin Epigenetics ; 13(1): 44, 2021 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-33632299

RESUMEN

BACKGROUND: Trimethylation of lysine 27 and dimethylation of lysine 9 of histone-H3 catalyzed by the histone methyltransferases EZH2 and G9a impede gene transcription in cancer. Our human bronchial epithelial (HBEC) pre-malignancy model studied the role of these histone modifications in transformation. Tobacco carcinogen transformed HBEC lines were characterized for cytosine DNA methylation, transcriptome reprogramming, and the effect of inhibiting EZH2 and G9a on the transformed phenotype. The effects of targeting EZH2 and G9a on lung cancer prevention was assessed in the A/J mouse lung tumor model. RESULTS: Carcinogen exposure induced transformation and DNA methylation of 12-96 genes in the four HBEC transformed (T) lines that was perpetuated in malignant tumors. In contrast, 506 unmethylated genes showed reduced expression in one or more HBECTs with many becoming methylated in tumors. ChIP-on-chip for HBEC2T identified 327 and 143 genes enriched for H3K27me3 and H3K9me2. Treatment of HBEC2T and HBEC13T with DZNep, a lysine methyltransferase inhibitor depleted EZH2, reversed transformation, and induced transcriptional reprogramming. The EZH2 small molecule inhibitor EPZ6438 also affected transformation and expression in HBEC2T, while a G9a inhibitor, UNC0642 was ineffective. Genetic knock down of EZH2 dramatically reduced carcinogen-induced transformation of HBEC2. Only DZNep treatment prevented progression of hyperplasia to adenomas in the NNK mouse lung tumor model through reducing EZH2 and affecting the expression of genes regulating cell growth and invasion. CONCLUSION: These studies demonstrate a critical role for EZH2 catalyzed histone modifications for premalignancy and its potential as a target for chemoprevention of lung carcinogenesis.


Asunto(s)
Ensamble y Desensamble de Cromatina/genética , Proteína Potenciadora del Homólogo Zeste 2/genética , Código de Histonas/efectos de los fármacos , Neoplasias/prevención & control , Adenosina/análogos & derivados , Adenosina/farmacología , Adenosilhomocisteinasa/antagonistas & inhibidores , Animales , Benzamidas/farmacología , Compuestos de Bifenilo/farmacología , Proliferación Celular/efectos de los fármacos , Islas de CpG , Metilación de ADN/efectos de los fármacos , Proteína Potenciadora del Homólogo Zeste 2/farmacología , Inhibidores Enzimáticos/farmacología , Epigénesis Genética/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Femenino , Código de Histonas/genética , Histona Metiltransferasas/antagonistas & inhibidores , Histona Metiltransferasas/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/farmacología , Histonas/metabolismo , Humanos , Neoplasias Pulmonares/inducido químicamente , Neoplasias Pulmonares/patología , Ratones , Morfolinas/farmacología , Fenotipo , Piridonas/farmacología , Transcriptoma/efectos de los fármacos
13.
Toxicol Sci ; 179(2): 220-228, 2021 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-33226417

RESUMEN

Electronic cigarettes are the most commonly used nicotine containing product among teenagers. The oral epithelium is the first site of exposure and our recent work revealed considerable diversity among e-liquids for composition and level of chemical constituents that impact nicotine deposition in a human oral-trachea cast and affect the formation of reactive carbonyls. Here, we evaluate the dose response for cytotoxicity and genotoxicity of e-cigarette-generated aerosols from 10 diverse flavored e-liquid products with and without nicotine compared with unflavored in 3 immortalized oral epithelial cell lines. Three e-liquids, Blue Pucker, Love Potion, and Jamestown caused ≥20% cell toxicity assessed by the neutral red uptake assay. Nine products induced significant levels of oxidative stress up to 2.4-fold quantified by the ROS-Glo assay in at least 1 cell line, with dose response seen for Love Potion with and without nicotine across all cell lines. Lipid peroxidation detected by the thiobarbituric acid reactive substances assay was less common among products; however, dose response increases up to 12-fold were seen for individual cell lines. Micronuclei formation indicative of genotoxicity was increased up to 5-fold for some products. Blue Pucker was the most genotoxic e-liquid, inducing micronuclei across all cell lines irrespective of nicotine status. A potency score derived from all assays identified Blue Pucker and Love Potion as the most hazardous e-liquids. These in vitro acute exposure studies provide new insight about the potential for some flavored vaping products to induce significant levels of oxidative stress and genotoxicity.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Adolescente , Aerosoles/toxicidad , Línea Celular , Daño del ADN , Células Epiteliales , Aromatizantes/toxicidad , Humanos , Nicotina/toxicidad
14.
Front Cell Infect Microbiol ; 10: 612360, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33614527

RESUMEN

Background: The role of lung epithelial cells in HIV-1-related lung comorbidities remains unclear, and the major hurdle in curing HIV is the persistence of latent HIV reservoirs in people living with HIV (PLWH). The advent of combined antiretroviral therapy has considerably increased the life span; however, the incidence of chronic lung diseases is significantly higher among PLWH. Lung epithelial cells orchestrate the respiratory immune responses and whether these cells are productively infected by HIV-1 is debatable. Methods: Normal human bronchial epithelial cells (NHBEs) grown on air-liquid interface were infected with X4-tropic HIV-1LAV and examined for latency using latency-reversing agents (LRAs). The role of CD4 and CXCR4 HIV coreceptors in NHBEs were tested, and DNA sequencing analysis was used to analyze the genomic integration of HIV proviral genes, Alu-HIVgag-pol, HIV-nef, and HIV-LTR. Lung epithelial sections from HIV-infected humans and SHIV-infected macaques were analyzed by FISH for HIV-gag-pol RNA and epithelial cell-specific immunostaining. Results and Discussion: NHBEs express CD4 and CXCR4 at higher levels than A549 cells. NHBEs are infected with HIV-1 basolaterally, but not apically, by X4-tropic HIV-1LAV in a CXCR4/CD4-dependent manner leading to HIV-p24 antigen production; however, NHBEs are induced to express CCR5 by IL-13 treatment. In the presence of cART, HIV-1 induces latency and integration of HIV provirus in the cellular DNA, which is rescued by the LRAs (endotoxin/vorinostat). Furthermore, lung epithelial cells from HIV-infected humans and SHIV-infected macaques contain HIV-specific RNA transcripts. Thus, lung epithelial cells are targeted by HIV-1 and could serve as potential HIV reservoirs that may contribute to the respiratory comorbidities in PLWH.


Asunto(s)
Infecciones por VIH , VIH-1 , Antirretrovirales , Linfocitos T CD4-Positivos , Células Epiteliales , Infecciones por VIH/tratamiento farmacológico , VIH-1/genética , Humanos , Latencia del Virus
15.
Carcinogenesis ; 30(12): 2023-30, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19917631

RESUMEN

Death-associated protein kinase (DAPK), a mediator of apoptotic systems, is silenced by promoter hypermethylation in lung and breast tumors. This gene has a CpG island extending 2500 bp from the translational start site; however, studies characterizing its transcriptional regulation have not been conducted. Two transcripts for DAPK were identified that code for a single protein, while being regulated by two promoters. The previously identified DAPK transcript designated as exon 1 transcript was expressed at levels 3-fold greater than the alternate exon 1b transcript. Deletion constructs of promoter 1 identified a 332 bp region containing a functional CP2-binding site important for expression of the exon 1 transcript. While moderate reporter activity was seen in promoter 2, the region comprising intron 1 and containing a HNF3B-binding site sustained expression of the alternate transcript. Sequencing the DAPK CpG island in tumor cell lines revealed dense, but heterogenous methylation of CpGs that blocked access of the CP2 and HNF3B proteins that in turn, was associated with loss of transcription that was restored by treatment with 5-aza-2'-deoxycytidine. Prevalences were similar for methylation of promoter 1 and 2 and intron 1 in lung tumors, but significantly greater in promoter 2 and intron 1 in breast tumors, indicative of tissue-specific differences in silencing these two transcripts. These studies show for the first time dual promoter regulation of DAPK, a tumor suppressor gene silenced in many cancers, and substantiate the importance of screening for silencing of both transcripts in tumors.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Metilación de ADN , Regulación Neoplásica de la Expresión Génica , Silenciador del Gen , Neoplasias/genética , Neoplasias/metabolismo , Regiones Promotoras Genéticas , Apoptosis , Secuencia de Bases , Sitios de Unión , Línea Celular Tumoral , Islas de CpG , Proteínas Quinasas Asociadas a Muerte Celular , Eliminación de Gen , Humanos , Datos de Secuencia Molecular , ARN Mensajero/metabolismo
16.
DNA Repair (Amst) ; 79: 1-9, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31055244

RESUMEN

The expression of DNA-dependent protein kinase catalytic subunit (DNA-PKc) is highly variable in smokers and reduced enzyme activity has been associated with risk for lung cancer. An in vitro model of lung pre-malignancy was used to evaluate the role of double-strand break DNA repair capacity in transformation of hTERT/CDK4 immortalized human bronchial epithelial cells (HBECs) and reprograming of the epigenome. Here we show that knockdown of DNA-PKc to levels simulating haploinsufficiency dramatically reduced DNA repair capacity following challenge with bleomycin and significantly increased transformation efficiency of HBEC lines exposed weekly for 12 weeks to this radiomimetic. Transformed HBEC lines with wild type or knockdown of DNA-PKc showed altered expression of more than 1,000 genes linked to major cell regulatory pathways involved in lung cancer. While lung cancer driver mutations were not detected in transformed clones, more than 300 genes that showed reduced expression associated with promoter methylation in transformed clones or predictive for methylation in malignant tumors were identified. These studies support reduced DNA repair capacity as a key factor in the initiation and clonal expansion of pre-neoplastic cells and double-strand break DNA damage as causal for epigenetic mediated silencing of many lung cancer-associated genes. The fact that DNA damage, repair, and epigenetic silencing of genes are causal for many other cancers that include colon and prostate extends the generalizability and impact of these findings.


Asunto(s)
Transformación Celular Neoplásica/genética , Metilación de ADN , Reparación del ADN , Proteína Quinasa Activada por ADN/genética , Epigénesis Genética , Células Epiteliales/metabolismo , Bleomicina/farmacología , Bronquios/citología , Línea Celular Tumoral , Células Epiteliales/efectos de los fármacos , Células Epiteliales/patología , Haploinsuficiencia , Humanos , Regiones Promotoras Genéticas , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/patología
17.
Cancer Res ; 79(8): 1758-1768, 2019 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-30622117

RESUMEN

The role of transcriptional regulator ten-eleven translocation methylcytosine dioxygenease 1 (TET1) has not been well characterized in lung cancer. Here we show that TET1 is overexpressed in adenocarcinoma and squamous cell carcinomas. TET1 knockdown reduced cell growth in vitro and in vivo and induced transcriptome reprogramming independent of its demethylating activity to affect key cancer signaling pathways. Wild-type p53 bound the TET1 promoter to suppress transcription, while p53 transversion mutations were most strongly associated with high TET1 expression. Knockdown of TET1 in p53-mutant cell lines induced senescence through a program involving generalized genomic instability manifested by DNA single- and double-strand breaks and induction of p21 that was synergistic with cisplatin and doxorubicin. These data identify TET1 as an oncogene in lung cancer whose gain of function via loss of p53 may be exploited through targeted therapy-induced senescence. SIGNIFICANCE: These studies identify TET1 as an oncogene in lung cancer whose gain of function following loss of p53 may be exploited by targeted therapy-induced senescence.See related commentary by Kondo, p. 1751.


Asunto(s)
Neoplasias Pulmonares/genética , Proteína p53 Supresora de Tumor/genética , Senescencia Celular , Regulación Neoplásica de la Expresión Génica , Humanos , Oxigenasas de Función Mixta , Proteínas Proto-Oncogénicas
18.
Cancer Res ; 65(23): 11185-92, 2005 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-16322269

RESUMEN

The activator protein-2alpha (AP-2) transcription factor plays a key role in regulating expression of genes involved in tumor growth and metastasis of human melanoma. We sought to assess the prognostic significance of AP-2 expression and its role in the transition of nevi to metastatic melanoma. Two cohorts were analyzed. One was a "progression" microarray containing melanoma specimens from M.D. Anderson Cancer Center representing 84 cases and the other was a retrospective cohort from Yale University representing 214 primary melanomas and 293 metastases. Analysis of total AP-2 expression using two quantitative systems [automated quantitative analysis (AQUA) and laser scanning cytometry (LSC)] revealed no correlation with diagnosis group. LSC analysis of the M.D. Anderson Cancer Center array showed that the number of cells expressing nuclear AP-2 was highest in the benign nevi group (11.85%) and significantly decreased in each phase of melanoma progression to 0.39% in the metastatic group. Both LSC and AQUA showed decreased nuclear AP-2 levels and increased cytoplasmic AP-2 that is directly proportional to progression. Neither nuclear nor cytoplasmic expression levels correlated with outcome. Intriguingly, the ratio of cytoplasmic to nuclear AP-2 predicted outcome in the entire population and in the primary tumors alone, demonstrating the power of the ratio to normalize for variations. Furthermore, the AP-2 ratio directly correlated with other clinicopathologic factors, including Breslow depth (R = 0.334, P < 0.001). We show that a high level of AP-2 expression in the cytoplasm relative to the nucleus correlates with poor prognosis and the loss of nuclear AP-2 expression is associated with malignant transformation and progression of melanoma.


Asunto(s)
Melanoma/metabolismo , Factor de Transcripción AP-2/biosíntesis , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Técnica del Anticuerpo Fluorescente , Humanos , Melanoma/química , Melanoma/patología , Valor Predictivo de las Pruebas , Pronóstico , Análisis por Matrices de Proteínas/métodos , Factor de Transcripción AP-2/análisis
19.
Cancer Res ; 64(1): 146-51, 2004 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-14729618

RESUMEN

We demonstrated previously that the switch from nonmetastatic to highly metastatic phenotype of human melanoma cells is directly related to secretion of procathepsin L form. This cysteine proteinase was identified on the basis of its property to cleave human C3, the third component of complement. In an attempt to control procathepsin L secretion, we have recently generated an anti-cathepsin L single chain variable fragment (ScFv) from an anti-cathepsin L monoclonal antibody generated against recombinant cathepsin L. We herein selected clones stably transfected with this anti-cathepsin L ScFv and analyzed them for changes in tumor growth and metastasis. We show that in stably transfected clones, anti-cathepsin L ScFv strongly inhibited the secretion of procathepsin L without modifying the intracellular amount or processing pattern of cathepsin L forms. Confocal analysis demonstrated colocalization of endogenous cathepsin L and anti-cathepsin L ScFv. In addition, expression of this ScFv strongly inhibited generation of tumor and metastasis by these human melanoma clones in nude mice. In vivo, the anti-cathepsin L ScFv-transfected cells produced tumors with decreased vascularization (angiogenesis) concomitant with increased apoptosis of tumor cells. Matrigel assay also demonstrated that melanoma invasiveness was completely abolished. Thus, this is the first demonstration that anti-cathepsin L ScFv could be used to inhibit the tumorigenic and metastatic phenotype of human melanoma, depending on procathepsin L secretion, and could therefore be used as a molecular tool in a therapeutic cellular approach.


Asunto(s)
Catepsinas/inmunología , Región Variable de Inmunoglobulina/genética , Melanoma/patología , Metástasis de la Neoplasia/prevención & control , Animales , Catepsina L , Cisteína Endopeptidasas , Humanos , Región Variable de Inmunoglobulina/farmacología , Neoplasias Pulmonares/prevención & control , Neoplasias Pulmonares/secundario , Ratones , Ratones Desnudos , Proteínas Recombinantes/farmacología , Transfección , Trasplante Heterólogo , Células Tumorales Cultivadas
20.
Cancer Res ; 62(17): 5106-14, 2002 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-12208768

RESUMEN

MCAM/MUC18 expression correlates with tumor thickness and metastatic potential of human melanoma cells in nude mice. Moreover, ectopic expression of MUC18 in primary cutaneous melanoma cells leads to increased tumor growth and metastasis in vivo. Here we tested the effect of a fully human anti-MUC18 antibody, ABX-MA1, on angiogenesis, tumor growth, and metastasis. ABX-MA1 had no effect on melanoma cell proliferation rate in vitro. However, when cells of the metastatic melanoma lines A375SM and WM2664 (which express high levels of MUC18) were injected s.c. into nude mice and treated with ABX-MA1 (100 micro g, weekly, i.p. for 5 weeks), tumor growth was significantly inhibited compared with control IgG-treated mice. ABX-MA1 treatment also suppressed experimental lung metastasis of these melanoma cells. ABX-MA1 disrupted spheroid formation by melanoma cells expressing MUC18 (homotypic interaction) and the ability of these cells to attach to human vascular endothelial cells [HUVECs (MUC18 positive)] in vitro. ABX-MA1 treatment of melanoma cells in vitro significantly inhibited the promoter and collagenase activity of matrix metalloproteinase 2, resulting in decreased invasion through Matrigel-coated filters. Decreased expression of matrix metalloproteinase 2 was also observed in the implanted tumors in vivo. Moreover, because HUVECs also express MUC18, ABX-MA1 directly disrupted the tube-like formation by HUVECs in an in vitro vessel formation assay. Collectively, these results point to usefulness of ABX-MA1 as a modality to treat melanoma either alone or in combination with conventional chemotherapy or other antitumor agents.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Antígenos CD , Antígenos de Superficie/fisiología , Melanoma/patología , Glicoproteínas de Membrana , Moléculas de Adhesión de Célula Nerviosa , Animales , Anticuerpos Monoclonales/inmunología , Especificidad de Anticuerpos , Antígenos de Superficie/inmunología , Antígeno CD146 , Adhesión Celular/fisiología , Regulación hacia Abajo , Endotelio Vascular/citología , Endotelio Vascular/metabolismo , Humanos , Inmunoglobulina G/inmunología , Inmunoglobulina G/farmacología , Masculino , Metaloproteinasa 2 de la Matriz/biosíntesis , Metaloproteinasa 2 de la Matriz/metabolismo , Inhibidores de la Metaloproteinasa de la Matriz , Melanoma/inmunología , Melanoma/secundario , Melanoma/terapia , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Neovascularización Patológica/inmunología , Neovascularización Patológica/patología , Neovascularización Patológica/terapia , Esferoides Celulares , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA