Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nanomedicine ; 10(4): 745-54, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24333586

RESUMEN

Neurotensin (NTS)-polyplex is a gene nanocarrier that has potential nanomedicine-based applications for the treatment of Parkinson's disease and cancers of cells expressing NTS receptor type 1. We assessed the acute inflammatory response to NTS-polyplex carrying a reporter gene in BALB/c mice. The intravenous injection of NTS-polyplex caused the specific expression of the reporter gene in gastrointestinal cells. Six hours after an intravenous injection of propidium iodide labeled-NTS-polyplex, fluorescent spots were located in the cells of the organs with a mononuclear phagocyte system, suggesting NTS-polyplex clearance. In contrast to lipopolysaccharide and carbon tetrachloride, NTS-polyplex did not increase the serum levels of tumor necrosis factor alpha, interleukin (IL)-1ß, IL-6, bilirubin, aspartate transaminase, and alanine transaminase. NTS-polyplex increased the levels of serum amyloid A and alkaline phosphatase, but these levels normalized after 24 h. Compared to carrageenan, the local injection of NTS-polyplex did not produce inflammation. Our results support the safety of NTS-polyplex. FROM THE CLINICAL EDITOR: This study focuses on the safety of neurotensin (NTS)-polyplex, a gene nanocarrier that has potential in the treatment of Parkinson's disease and cancers of cells expressing NTS receptor type 1. NTS polyplex demonstrates a better safety profile compared with carrageenan, lipopolysaccharide, and carbon tetrachloride in a murine model.


Asunto(s)
Técnicas de Transferencia de Gen , Terapia Genética/métodos , Nanopartículas , Enfermedad de Parkinson/terapia , Receptores de Neurotensina , Seguridad , Administración Intravenosa , Animales , Ratones , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Receptores de Neurotensina/biosíntesis
2.
PLoS Negl Trop Dis ; 7(2): e2083, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23469306

RESUMEN

BACKGROUND: Entamoeba histolytica, a protozoan parasite of humans, produces dysenteric diarrhea, intestinal mucosa damage and extraintestinal infection. It has been proposed that the intestinal microbiota composition could be an important regulatory factor of amebic virulence and tissue invasion, particularly if pathogenic bacteria are present. Recent in vitro studies have shown that Entamoeba histolytica trophozoites induced human colonic CaCo2 cells to synthesize TLR-2 and TLR-4 and proinflammatory cytokines after binding to the amebic Gal/GalNac lectin carbohydrate recognition domain. The magnitude of the inflammatory response induced by trophozoites and the subsequent cell damage were synergized when cells had previously been exposed to pathogenic bacteria. METHODOLOGY/PRINCIPAL FINDINGS: We show here that E. histolytica activation of the classic TLR pathway in CaCo2 cells is required to induce ß defensin-2 (HBD2) mRNA expression and production of a 5-kDa cationic peptide with similar properties to the antimicrobial HBD2 expressed by CaCo2 cells exposed to enterotoxigenic Escherichia coli. The induced peptide showed capacity to permeabilize membranes of bacteria and live trophozoites. This activity was abrogated by inhibition of TLR2/4-NFκB pathway or by neutralization with an anti-HBD2 antibody. CONCLUSIONS/SIGNIFICANCE: Entamoeba histolytica trophozoites bind to human intestinal cells and induce expression of HBD2; an antimicrobial molecule with capacity to destroy pathogenic bacteria and trophozoites. HDB2's possible role as a modulator of the course of intestinal infections, particularly in mixed ameba/bacteria infections, is discussed.


Asunto(s)
Entamoeba histolytica/inmunología , Células Epiteliales/inmunología , Células Epiteliales/parasitología , Inmunidad Innata , beta-Defensinas/biosíntesis , beta-Defensinas/inmunología , Células CACO-2 , Humanos , Transducción de Señal , Receptores Toll-Like/inmunología
3.
Nanoscale ; 4(24): 7751-9, 2012 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-23138458

RESUMEN

In this work the two-photon activity of nanoparticles obtained from a fluorene monomer (M1) and its cross-conjugated polymer (P1) is reported. Aqueous suspensions of M1 and P1 nanoparticles prepared through the reprecipitation method exhibited maximum two-photon absorption (TPA) cross-sections of 84 and 9860 GM (1 GM = 10(-50) cm(4) s) at 740 nm, respectively, and a fluorescence quantum yield of ~1. Such a two-photon activity was practically equal with respect to that for molecular solutions of M1 and P1. These materials were then successfully encapsulated into silica nanoparticles to provide bio-compatibly. A lung cancer cell line (A549) and a human cervical cancer cell line (HeLa cells) were incubated with our fluorescent silica nanoparticles to carry out two-photon imaging. By means of these studies we demonstrate that optimized nonlinear optical polymers loaded in silica nanoparticles can be used as efficient probes with low cytotoxicity and good photostability for two-photon fluorescence microscopy. To the best of our knowledge, studies concerning polymer-doped silica nanoparticles exhibiting large two-photon activity have not been reported in the literature.


Asunto(s)
Fluorenos/química , Nanopartículas/química , Polímeros/química , Dióxido de Silicio/química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Células HeLa , Humanos , Microscopía Fluorescente , Nanopartículas/toxicidad , Fotones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA