Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Cell Mol Med ; 27(19): 2864-2875, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37667538

RESUMEN

Acute megakaryoblastic leukaemia (AMkL) is a rare subtype of acute myeloid leukaemia (AML) representing 5% of all reported cases, and frequently diagnosed in children with Down syndrome. Patients diagnosed with AMkL have low overall survival and have poor outcome to treatment, thus novel therapies such as CAR T cell therapy could represent an alternative in treating AMkL. We investigated the effect of a new CAR T cell which targets CD41, a specific surface antigen for M7-AMkL, against an in vitro model for AMkL, DAMI Luc2 cell line. The performed flow cytometry evaluation highlighted a percentage of 93.8% CAR T cells eGFP-positive and a limited acute effect on lowering the target cell population. However, the interaction between effector and target (E:T) cells, at a low ratio, lowered the cell membrane integrity, and reduced the M7-AMkL cell population after 24 h of co-culture, while the cytotoxic effect was not significant in groups with higher E:T ratio. Our findings suggest that the anti-CD41 CAR T cells are efficient for a limited time spawn and the cytotoxic effect is visible in all experimental groups with low E:T ratio.

2.
Haematologica ; 108(7): 1886-1899, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-36519323

RESUMEN

Better understanding of the biology of resistance to DNA methyltransferase (DNMT) inhibitors is required to identify therapies that can improve their efficacy for patients with high-risk myelodysplastic syndrome (MDS). CCRL2 is an atypical chemokine receptor that is upregulated in CD34+ cells from MDS patients and induces proliferation of MDS and secondary acute myeloid leukemia (sAML) cells. In this study, we evaluated any role that CCRL2 may have in the regulation of pathways associated with poor response or resistance to DNMT inhibitors. We found that CCRL2 knockdown in TF-1 cells downregulated DNA methylation and PRC2 activity pathways and increased DNMT suppression by azacitidine in MDS/sAML cell lines (MDS92, MDS-L and TF-1). Consistently, CCRL2 deletion increased the sensitivity of these cells to azacitidine in vitro and the efficacy of azacitidine in an MDS-L xenograft model. Furthermore, CCRL2 overexpression in MDS-L and TF-1 cells decreased their sensitivity to azacitidine. Finally, CCRL2 levels were higher in CD34+ cells from MDS and MDS/myeloproliferative neoplasm patients with poor response to DNMT inhibitors. In conclusion, we demonstrated that CCRL2 modulates epigenetic regulatory pathways, particularly DNMT levels, and affects the sensitivity of MDS/sAML cells to azacitidine. These results support CCRL2 targeting as having therapeutic potential in MDS/sAML.


Asunto(s)
Leucemia Mieloide Aguda , Síndromes Mielodisplásicos , Humanos , Azacitidina/farmacología , Azacitidina/uso terapéutico , Síndromes Mielodisplásicos/tratamiento farmacológico , Síndromes Mielodisplásicos/genética , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Línea Celular
3.
J Cell Mol Med ; 2021 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-34132464

RESUMEN

Patients with relapsed/refractory acute myeloid leukaemia (AML), ineligible for intensive chemotherapy and allogeneic stem cell transplantation, have a dismal prognosis. For such cases, hypomethylating agents are a viable alternative, but with limited success. Combination chemotherapy using a hypomethylating agent plus another drug would potentially bring forward new alternatives. In the present manuscript, we present the cell and molecular background for a clinical scenario of a 44-year-old patient, diagnosed with high-grade serous ovarian carcinoma, diagnosed, and treated with a synchronous AML. Once the ovarian carcinoma relapsed, maintenance treatment with olaparib was initiated. Concomitantly, the bone marrow aspirate showed 30% myeloid blasts, consistent with a relapse of the underlying haematological disease. Azacytidine 75 mg/m2 treatment was started for seven days. The patient was administered two regimens of azacytidine monotherapy, additional to the olaparib-based maintenance therapy. After the second treatment, the patient presented with leucocytosis and 94% myeloid blasts on the bone marrow smear. Later, the patient unfortunately died. Following this clinical scenario, we reproduced in vitro the combination chemotherapy of azacytidine plus olaparib, to accurately assess the basic mechanisms of leukaemia progression, and resistance to treatment. Combination chemotherapy with drugs that theoretically target both malignancies might potentially be of use. Still, further research, both pre-clinical and clinical, is needed to accurately assess such cases.

4.
J Cell Mol Med ; 24(19): 11100-11110, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32889753

RESUMEN

Primary myelofibrosis (PMF) is a Ph-negative myeloproliferative neoplasm (MPN), characterized by advanced bone marrow fibrosis and extramedullary haematopoiesis. The bone marrow fibrosis results from excessive proliferation of fibroblasts that are influenced by several cytokines in the microenvironment, of which transforming growth factor-ß (TGF-ß) is the most important. Micromechanics related to the niche has not yet been elucidated. In this study, we hypothesized that mechanical stress modulates TGF-ß signalling leading to further activation and subsequent proliferation and invasion of bone marrow fibroblasts, thus showing the important role of micromechanics in the development and progression of PMF, both in the bone marrow and in extramedullary sites. Using three PMF-derived fibroblast cell lines and transforming growth factor-ß receptor (TGFBR) 1 and 2 knock-down PMF-derived fibroblasts, we showed that mechanical stress does stimulate the collagen synthesis by the fibroblasts in patients with myelofibrosis, through the TGFBR1, which however seems to be activated through alternative pathways, other than TGFBR2.


Asunto(s)
Progresión de la Enfermedad , Mielofibrosis Primaria/metabolismo , Mielofibrosis Primaria/fisiopatología , Factor de Crecimiento Transformador beta/metabolismo , Animales , Fenómenos Biomecánicos , Fibroblastos/metabolismo , Fibroblastos/patología , Humanos , Hipertensión Pulmonar/complicaciones , Hipertensión Pulmonar/diagnóstico por imagen , Ratones Desnudos , Modelos Biológicos , Mielofibrosis Primaria/complicaciones , Mielofibrosis Primaria/patología , Receptor Tipo I de Factor de Crecimiento Transformador beta/metabolismo , Receptor Tipo II de Factor de Crecimiento Transformador beta/metabolismo , Estrés Mecánico
5.
Cell Physiol Biochem ; 54(5): 994-1012, 2020 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-33006449

RESUMEN

BACKGROUND/AIMS: Down syndrome associated disorders are caused by a complex genetic context where trisomy 21 is a central component in relation to other changes involving epigenetic regulators and signaling molecules. This unique genetic context is responsible for the predisposition of people with Down syndrome to acute leukemia. Although, the research in this field has discovered some important pathogenic keys, the exact mechanism of this predisposition is not known. METHODS: In this study we applied functional enrichment analysis to evaluate the interactions between genes localized on chromosome 21, genes already identify as having a key role in acute leukemia of Down syndrome, miRNAs and signaling pathways implicated in cancer and cell development and found that miR-155 has a high impact in genes present on chromosome 21. Forward, we performed next generation sequencing on DNA samples from a cohort of patients diagnosed with acute leukemia of Down syndrome and in vitro functional assay using a CMK-86 cell line, transfected with either mimic or inhibitor of the microRNA-155-5p. RESULTS: Our results show that the epigenetic alteration of the TNF superfamily receptors in Down syndrome, which can be correlated to microRNA-155-5p aberrant activity, may play an important role in cell signaling and thus be linked to acute myeloid leukemia. CONCLUSION: Some genes, already shown to be mutated in AML-DS, are potential targets for miR-155. Our results show that the epigenetic alteration of the TNF superfamily receptors in Down syndrome may play an important role in cell signaling and thus be linked to acute myeloid leukemia.


Asunto(s)
Síndrome de Down/complicaciones , Epigénesis Genética , Regulación Leucémica de la Expresión Génica , Leucemia Mieloide Aguda/patología , Reacción Leucemoide/patología , MicroARNs/genética , Receptores del Factor de Necrosis Tumoral/genética , Diferenciación Celular , Estudios de Cohortes , Síndrome de Down/etiología , Síndrome de Down/genética , Síndrome de Down/metabolismo , Síndrome de Down/patología , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Leucemia Mieloide Aguda/etiología , Leucemia Mieloide Aguda/metabolismo , Reacción Leucemoide/etiología , Reacción Leucemoide/metabolismo , Masculino , Receptores del Factor de Necrosis Tumoral/metabolismo
6.
Crit Rev Clin Lab Sci ; 56(4): 247-259, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31043105

RESUMEN

Childhood leukemia is mostly a "developmental accident" during fetal hematopoiesis and may require multiple prenatal and postnatal "hits". The World Health Organization defines transient leukemia of Down syndrome (DS) as increased peripheral blood blasts in neonates with DS and classifies this type of leukemia as a separate entity. Although it was shown that DS predisposes children to myeloid leukemia, neither the nature of the predisposition nor the associated genetic lesions have been defined. Acute myeloid leukemia of DS is a unique disease characterized by a long pre-leukemic, myelodysplastic phase, unusual chromosomal findings and a high cure rate. In the present manuscript, we present a comprehensive review of the literature about clinical and biological findings of transient leukemia of DS (TL-DS) and link them with the genetic discoveries in the field. We address the manuscript to the pediatric generalist and especially to the next generation of pediatric hematologists.


Asunto(s)
Síndrome de Down/complicaciones , Reacción Leucemoide/complicaciones , Síndrome de Down/genética , Síndrome de Down/terapia , Predisposición Genética a la Enfermedad , Humanos , Reacción Leucemoide/genética , Reacción Leucemoide/terapia
8.
Front Oncol ; 12: 815037, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35372085

RESUMEN

Myelodysplastic syndromes (MDS) are a heterogeneous group of clonal bone-marrow diseases with ineffective hematopoiesis resulting in cytopenias and morphologic dysplasia of hematopoietic cells. MDS carry a wide spectrum of genetic abnormalities, ranging from chromosomal abnormalities such as deletions/additions, to recurrent mutations affecting the spliceosome, epigenetic modifiers, or transcription factors. As opposed to AML, research in MDS has been hindered by the lack of preclinical models that faithfully replicate the complexity of the disease and capture the heterogeneity. The complex molecular landscape of the disease poses a unique challenge when creating transgenic mouse-models. In addition, primary MDS cells are difficult to manipulate ex vivo limiting in vitro studies and resulting in a paucity of cell lines and patient derived xenograft models. In recent years, progress has been made in the development of both transgenic and xenograft murine models advancing our understanding of individual contributors to MDS pathology as well as the complex primary interplay of genetic and microenvironment aberrations. We here present a comprehensive review of these transgenic and xenograft models for MDS and future directions.

9.
Sci Adv ; 8(7): eabl8952, 2022 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-35179961

RESUMEN

The identification of new pathways supporting the myelodysplastic syndrome (MDS) primitive cells growth is required to develop targeted therapies. Within myeloid malignancies, men have worse outcomes than women, suggesting male sex hormone-driven effects in malignant hematopoiesis. Androgen receptor promotes the expression of five granulocyte colony-stimulating factor receptor-regulated genes. Among them, CCRL2 encodes an atypical chemokine receptor regulating cytokine signaling in granulocytes, but its role in myeloid malignancies is unknown. Our study revealed that CCRL2 is up-regulated in primitive cells from patients with MDS and secondary acute myeloid leukemia (sAML). CCRL2 knockdown suppressed MDS92 and MDS-L cell growth and clonogenicity in vitro and in vivo and decreased JAK2/STAT3/STAT5 phosphorylation. CCRL2 coprecipitated with JAK2 and potentiated JAK2-STAT interaction. Erythroleukemia cells expressing JAK2V617F showed less effect of CCRL2 knockdown, whereas fedratinib potentiated the CCRL2 knockdown effect. Conclusively, our results implicate CCRL2 as an MDS/sAML cell growth mediator, partially through JAK2/STAT signaling.


Asunto(s)
Leucemia Mieloide Aguda , Síndromes Mielodisplásicos , Proliferación Celular , Femenino , Hematopoyesis , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Masculino , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/patología , Transducción de Señal
10.
Spectrochim Acta A Mol Biomol Spectrosc ; 264: 120216, 2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-34364036

RESUMEN

This study highlights the potential of surface-enhanced Raman scattering (SERS) to differentiate between B-cell lymphoma (BCL), T-cell lymphoma (TCL), lymph node metastasis of melanoma (Met) and control (Ctr) samples based on the specific SERS signal of DNA extracted from lymph node tissue biopsy. Differences in the methylation profiles as well as the specific interaction of malignant and non-malignant DNA with the metal nanostructure are captured in specific variations of the band at 1005 cm-1, attributed to 5-methylcytosine and the band at 730 cm-1, attributed to adenine. Thus, using the area ratio of these two SERS marker bands as input for univariate classification, an area under the curve (AUC) of 0.70 was achieved in differentiating between malignant and non-malignant DNA. In addition, DNA from the BCL and TCL groups exhibited differences in the area of the SERS band at 730 cm-1, yielding an AUC of 0.84 in differentiating between these two lymphadenopathies. Lastly, using multivariate data analysis techniques, an overall accuracy of 94.7% was achieved in the differential diagnosis between the BCL, TCL, Met and Ctr groups. These results pave the way towards the implementation of SERS as a novel tool in the clinical setting for improving the diagnosis of malignant lymphadenopathy.


Asunto(s)
Metilación de ADN , Linfadenopatía , ADN/genética , Diagnóstico Diferencial , Humanos , Espectrometría Raman
11.
Nat Commun ; 13(1): 5773, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-36182931

RESUMEN

Precise and reliable cell-specific gene delivery remains technically challenging. Here we report a splicing-based approach for controlling gene expression whereby separate translational reading frames are coupled to the inclusion or exclusion of mutated, frameshifting cell-specific alternative exons. Candidate exons are identified by analyzing thousands of publicly available RNA sequencing datasets and filtering by cell specificity, conservation, and local intron length. This method, which we denote splicing-linked expression design (SLED), can be combined in a Boolean manner with existing techniques such as minipromoters and viral capsids. SLED can use strong constitutive promoters, without sacrificing precision, by decoupling the tradeoff between promoter strength and selectivity. AAV-packaged SLED vectors can selectively deliver fluorescent reporters and calcium indicators to various neuronal subtypes in vivo. We also demonstrate gene therapy utility by creating SLED vectors that can target PRPH2 and SF3B1 mutations. The flexibility of SLED technology enables creative avenues for basic and translational research.


Asunto(s)
Calcio , Empalme del ARN , Empalme Alternativo/genética , Secuencia de Bases , Exones/genética , Regulación de la Expresión Génica , Intrones/genética
12.
J Clin Med ; 10(20)2021 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-34682889

RESUMEN

INTRODUCTION: The examination of vital signs and their changes during illness can alert physicians to possible impending deterioration and organ dysfunction. The Modified Early Warning Score (MEWS) is used worldwide as a track and trigger system that can help to identify patients at risk of critical illness. Thus, the current study aimed to assess the ability of MEWS to predict the mortality of hematologic patients at the point of transfer from the ward to the intensive care unit (ICU). MATERIALS AND METHODS: The present study was retrospective, longitudinal, and observational, conducted at an oncology hospital in the city of Cluj-Napoca, Romania. We included 174 patients with hematological disorders transferred from the ward to the ICU between the 1st of January 2018 and the 1st of May 2020. We assessed the MEWS at the moment of admission in these patients in the ICU. The accuracy of MEWS in predicting mortality was assessed via the area under the receiver operating characteristic curves (AUC), and sensitivity, specificity, and hazard ratio (HR) were calculated for different MEWS cutoffs. MEWS values considering the status at discharge and frequency of death by MEWS were also analyzed. RESULTS: We calculated MEWS values considering the status at discharge (p < 0.0001), and we assessed the frequency of death by MEWS. We also calculated the hazard ratio (HR) of death depending on the selected MEWS cutoff. The best cutoff point was found to be ≥6, with an accuracy of 0.667, sensitivity of 0.675, specificity of 0.646, and AUC of 0.731. Patients with higher MEWS had a higher probability of mortality. CONCLUSION: The MEWS and cutoff points were determined on a sample of hematologic patients at the moment of admission to the ICU. The final aim is to encourage physicians to use these scores to improve awareness of organ failure to admit patients to the ICU sooner and limit overall morbidity and mortality. The presence of an ICU physician on ward rounds might help in reducing the timeframe of access to a high-dependency unit (HDU) or ICU. An extension of these scores outside hematologic patients or considering hematologic patients outside ICU must be further studied.

13.
Med Pharm Rep ; 94(3): 298-306, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34430851

RESUMEN

BACKGROUND AND AIMS: Alcohol is a psychoactive substance that causes dependence, with many thousands of years in the history of mankind, being widely used in different cultures. According to the International Agency for Research on Cancer, alcohol is involved in the development of cancer, being directly associated with it. Considering that alcohol is involved in the initiation and dissemination of gastrointestinal malignancies, the objective of the study was to assess its role in the pathogenesis of T-cell lymphomas, as well as its possible correlation with chronic consumption. METHODS: The patient cohort was compiled from the Sixth Medical Center of the People's Liberation Army Navy General Hospital in Beijing, China. A total of 30 patients matched the criteria and were enrolled in the study. Statistical analysis of the raw data was performed using R Statistics version R 3.5.1. released on the 29.08.2018. RESULTS: Our data demonstrate that the most common extranodal involvment of T-cell lymphoma patients is represented in decreasing order by bone marrow, peritoneum, rhino-oropharynx and the liver-biliary system. Nodal involvement is mainly represented in decreasing order by the laterocervical, axillary, mediastinal and inguinal regions. CONCLUSIONS: These findings may be of value in further research and practical/clinical settings. Fever is the most common clinical feature and was present in most studied patients.

14.
Front Bioeng Biotechnol ; 9: 703268, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34368097

RESUMEN

Here we show that surface-enhanced Raman scattering (SERS) analysis captures the relative hypomethylation of DNA from patients with acute leukemia associated with Down syndrome (AL-DS) compared with patients diagnosed with transient leukemia associated with Down syndrome (TL-DS), an information inferred from the area under the SERS band at 1005 cm-1 attributed to 5-methycytosine. The receiver operating characteristic (ROC) analysis of the area under the SERS band at 1005 cm-1 yielded an area under the curve (AUC) of 0.77 in differentiating between the AL-DS and TL-DS groups. In addition, we showed that DNA from patients with non-DS myeloproliferative neoplasm (non-DS-MPN) is hypomethylated compared to non-DS-AL, the area under the SERS band at 1005 cm-1 yielding an AUC of 0.78 in separating between non-DS-MPN and non-DS-AL. Overall, in this study, the area of the 1005 cm-1 DNA SERS marker band shows a stepwise decrease in DNA global methylation as cells progress from a pre-leukemia to a full-blown acute leukemia, highlighting thus the potential of SERS as an emerging method of analyzing the methylation landscape of DNA in the context of leukemia genesis and progression.

15.
Ann Transl Med ; 9(13): 1091, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34423003

RESUMEN

Hemophilia A (HA) and hemophilia B (HB) are rare disorders, being caused by the total lack or under-expression of two factors from the coagulation cascade coded by genes of the X chromosome. Thus, in hemophilic patients, the blood does not clot properly. This results in spontaneous bleeding episodes after an injury or surgical intervention. A patient-centered regimen is considered optimal. Age, pharmacokinetics, bleeding phenotype, joint status, adherence, physical activity, personal goals are all factors that should be considered when individualizing therapy. In the past 10 years, many innovations in the diagnostic and treatment options were presented as being either approved or in development, thus helping clinicians to improve the standard-of-care for patients with hemophilia. Recombinant factors still remain the standard of care in hemophilia, however they pose a challenge to treatment adherence because they have short half-life, which where the extended half-life (EHL) factors come with the solution, increasing the half-life to 96 hours. Gene therapies have a promising future with proven beneficial effects in clinical trials. We present and critically analyze in the current manuscript the pros and cons of all the major discoveries in the diagnosis and treatment of HA and HB, as well as identify key areas of hemophilia research where improvements are needed.

16.
Ann Transl Med ; 9(1): 68, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33553361

RESUMEN

Acute leukemias (both myeloid and lymphoblastic) are a group of diseases for which each year more successful therapies are implemented. However, in a subset of cases the overall survival (OS) is still exceptionally low due to the infiltration of leukemic cells in the central nervous system (CNS) and the subsequent formation of brain tumors. The CNS involvement is more common in acute lymphocytic leukemia (ALL), than in adult acute myeloid leukemia (AML), although the rates for the second case might be underestimated. The main reasons for CNS invasion are related to the expression of specific adhesion molecules (VLA-4, ICAM-1, VCAM, L-selectin, PECAM-1, CD18, LFA-1, CD58, CD44, CXCL12) by a subpopulation of leukemic cells, called "sticky cells" which have the ability to interact and adhere to endothelial cells. Moreover, the microenvironment becomes hypoxic and together with secretion of VEGF-A by ALL or AML cells the permeability of vasculature in the bone marrow increases, coupled with the disruption of blood brain barrier. There is a single subpopulation of leukemia cells, called leukemia stem cells (LSCs) that is able to resist in the new microenvironment due to its high adaptability. The LCSs enter into the arachnoid, migrate, and intensively proliferate in cerebrospinal fluid (CSF) and consequently infiltrate perivascular spaces and brain parenchyma. Moreover, the CNS is an immune privileged site that also protects leukemic cells from chemotherapy. CD56/NCAM is the most important surface molecule often overexpressed by leukemic stem cells that offers them the ability to infiltrate in the CNS. Although asymptomatic or with unspecific symptoms, CNS leukemia should be assessed in both AML/ALL patients, through a combination of flow cytometry and cytological analysis of CSF. Intrathecal therapy (ITT) is a preventive measure for CNS involvement in AML and ALL, still much research is needed in finding the appropriate target that would dramatically lower CNS involvement in acute leukemia.

17.
Front Pharmacol ; 11: 1044, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32742264

RESUMEN

Myelodysplastic syndromes (MDS) are a heterogeneous group of malignant disorders of hematopoietic stem and progenitor cells (HSPC), mainly characterized by ineffective hematopoiesis leading to peripheral cytopenias and progressive bone marrow failure. While clonal dominance is nearly universal at diagnosis, most genetic mutations identified in patients with MDS do not provide a conspicuous advantage to the malignant cells. In this context, malignant cells alter their adjacent bone marrow microenvironment (BME) and rely on cell extrinsic factors to maintain clonal dominance. The profoundly disturbed BME favors the myelodysplastic cells and, most importantly is detrimental to normal hematopoietic cells. Thus, the MDS microenvironment not only contributes to the observed cytopenias seen in these patients but could also negatively impact the engraftment of normal, allogeneic HSPCs in patients with MDS undergoing bone marrow transplant. Therefore, successful therapies in MDS should not only target the malignant cells but also reprogram their bone marrow microenvironment. Here, we will provide a synopsis of how drugs currently used or on the verge of being approved for the treatment of MDS may achieve this goal.

18.
Biomark Med ; 14(6): 451-458, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32270699

RESUMEN

Chronic myelogenous leukemia (CML) is a hematological malignancy characterized by the excessive proliferation of myeloid progenitors. In the case of CML, these extracellular vesicles (EVs) were shown to communicate with hematopoietic stem cells, mesenchymal stem cells, myeloid derived suppressor cells and endothelial cells determining a beneficial microenvironment for the CML clone. Moreover, as these EVs are marked through BCR-ABL1, they were shown to be useful in clinical research in determining the grade of molecular remission with further studies being needed to determine if they are better or worse at predicting CML relapse. More than this, we consider BCR-ABL1-positive EVs to represent only a stepping-stone for other malignancies that also present fusion genes that are loaded in EVs.


Asunto(s)
Vesículas Extracelulares/genética , Proteínas de Fusión bcr-abl/genética , Humanos , Células K562 , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Microambiente Tumoral
19.
J Clin Med ; 9(9)2020 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-32911829

RESUMEN

In the last decade there has been tremendous effort in offering better therapeutic management strategies to patients with hematologic malignancies. These efforts have ranged from biological to clinical approaches and resulted in the rapid development of new approaches. The main "problem" that comes with the high influx of newly approved drugs, which not only influences hematologists that frequently work with these drugs but also affects other healthcare professionals that work with hematologists in patient management, including intensive care unit (ICU) physicians, is they have to keep up within their specialty and, in addition, with the side-effects that can occur when encountering hematology-specific therapies. Nonetheless, there are few people that have an in-depth understanding of a specialty outside theirs. Thus, this manuscript offers an overview of the most common side-effects caused by therapies used in hematology nowadays, or that are currently being investigated in clinical trials, with the purpose to serve as an aid to other specialties. Nevertheless, because of the high amount of information on this subject, each chapter will offer an overview of the side-effects of a drug class with each reference of the section being intended as further reading.

20.
J Immunother Cancer ; 8(1)2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32474415

RESUMEN

Recently, an increasing number of novel drugs were approved in oncology and hematology. Nevertheless, pharmacology progress comes with a variety of side effects, of which cytokine release syndrome (CRS) is a potential complication of some immunotherapies that can lead to multiorgan failure if not diagnosed and treated accordingly. CRS generally occurs with therapies that lead to highly activated T cells, like chimeric antigen receptor T cells or in the case of bispecific T-cell engaging antibodies. This, in turn, leads to a proinflammatory state with subsequent organ damage. To better manage CRS there is a need for specific therapies or to repurpose strategies that are already known to be useful in similar situations. Current management strategies for CRS are represented by anticytokine directed therapies and corticosteroids. Based on its pathophysiology and the resemblance of CRS to sepsis and septic shock, as well as based on the principles of initiation of continuous renal replacement therapy (CRRT) in sepsis, we propose the rationale of using CRRT therapy as an adjunct treatment in CRS where all the other approaches have failed in controlling the clinically significant manifestations.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Terapia de Reemplazo Renal Continuo/métodos , Síndrome de Liberación de Citoquinas/terapia , Inmunoterapia/métodos , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA