Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Eur J Clin Invest ; 53(5): e13957, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36692131

RESUMEN

BACKGROUND: Indiscriminate use of antimicrobials and antimicrobial resistance is a public health threat. IMX-BVN-1, a 29-host mRNA classifier, provides two separate scores that predict likelihoods of bacterial and viral infections in patients with suspected acute infections. We validated the performance of IMX-BVN-1 in adults attending acute health care settings with suspected influenza. METHOD: We amplified 29-host response genes in RNA extracted from blood by NanoString nCounter. IMX-BVN-1 calculated two scores to predict probabilities of bacterial and viral infections. Results were compared against the infection status (no infection; highly probable/possible infection; confirmed infection) determined by clinical adjudication. RESULTS: Amongst 602 adult patients (74.9% ED, 16.9% ICU, 8.1% outpatients), 7.6% showed in-hospital mortality and 15.5% immunosuppression. Median IMX-BVN-1 bacterial and viral scores were higher in patients with confirmed bacterial (0.27) and viral (0.62) infections than in those without bacterial (0.08) or viral (0.21) infection, respectively. The AUROC distinguishing bacterial from nonbacterial illness was 0.81 and 0.87 when distinguishing viral from nonviral illness. The bacterial top quartile's positive likelihood ratio (LR) was 4.38 with a rule-in specificity of 88%; the bacterial bottom quartile's negative LR was 0.13 with a rule-out sensitivity of 96%. Similarly, the viral top quartile showed an infinite LR with rule-in specificity of 100%; the viral bottom quartile had a LR of 0.22 and a rule-out sensitivity of 85%. CONCLUSION: IMX-BVN-1 showed high accuracy for differentiating bacterial and viral infections from noninfectious illness in patients with suspected influenza. Clinical utility of IMX-BVN will be validated following integration into a point of care system.


Asunto(s)
Infecciones Bacterianas , Gripe Humana , Virosis , Adulto , Humanos , Cuidados Críticos , ARN Mensajero , Probabilidad , Infecciones Bacterianas/diagnóstico , Infecciones Bacterianas/microbiología
2.
Int J Mol Sci ; 24(3)2023 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-36768847

RESUMEN

Patients with preexisting metabolic disorders such as diabetes are at a higher risk of developing severe coronavirus disease 2019 (COVID-19). Mitochondrion, the very organelle that controls cellular metabolism, holds the key to understanding disease progression at the cellular level. Our current study aimed to understand how cellular metabolism contributes to COVID-19 outcomes. Metacore pathway enrichment analyses on differentially expressed genes (encoded by both mitochondrial and nuclear deoxyribonucleic acid (DNA)) involved in cellular metabolism, regulation of mitochondrial respiration and organization, and apoptosis, was performed on RNA sequencing (RNASeq) data from blood samples collected from healthy controls and patients with mild/moderate or severe COVID-19. Genes from the enriched pathways were analyzed by network analysis to uncover interactions among them and up- or downstream genes within each pathway. Compared to the mild/moderate COVID-19, the upregulation of a myriad of growth factor and cell cycle signaling pathways, with concomitant downregulation of interferon signaling pathways, were observed in the severe group. Matrix metallopeptidase 9 (MMP9) was found in five of the top 10 upregulated pathways, indicating its potential as therapeutic target against COVID-19. In summary, our data demonstrates aberrant activation of endocrine signaling in severe COVID-19, and its implication in immune and metabolic dysfunction.


Asunto(s)
COVID-19 , Humanos , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Transducción de Señal , Péptidos y Proteínas de Señalización Intercelular , Mitocondrias/metabolismo
3.
Eur Respir J ; 49(6)2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28619954

RESUMEN

Host response biomarkers can accurately distinguish between influenza and bacterial infection. However, published biomarkers require the measurement of many genes, thereby making it difficult to implement them in clinical practice. This study aims to identify a single-gene biomarker with a high diagnostic accuracy equivalent to multi-gene biomarkers.In this study, we combined an integrated genomic analysis of 1071 individuals with in vitro experiments using well-established infection models.We identified a single-gene biomarker, IFI27, which had a high prediction accuracy (91%) equivalent to that obtained by multi-gene biomarkers. In vitro studies showed that IFI27 was upregulated by TLR7 in plasmacytoid dendritic cells, antigen-presenting cells that responded to influenza virus rather than bacteria. In vivo studies confirmed that IFI27 was expressed in influenza patients but not in bacterial infection, as demonstrated in multiple patient cohorts (n=521). In a large prospective study (n=439) of patients presented with undifferentiated respiratory illness (aetiologies included viral, bacterial and non-infectious conditions), IFI27 displayed 88% diagnostic accuracy (AUC) and 90% specificity in discriminating between influenza and bacterial infections.IFI27 represents a significant step forward in overcoming a translational barrier in applying genomic assay in clinical setting; its implementation may improve the diagnosis and management of respiratory infection.


Asunto(s)
Infecciones Bacterianas , Gripe Humana , Proteínas de la Membrana , Infecciones del Sistema Respiratorio , Infecciones Bacterianas/diagnóstico , Infecciones Bacterianas/genética , Fenómenos Fisiológicos Bacterianos , Biomarcadores/análisis , Diagnóstico Diferencial , Femenino , Expresión Génica , Interacciones Huésped-Patógeno/genética , Humanos , Gripe Humana/diagnóstico , Gripe Humana/genética , Interferones/genética , Masculino , Proteínas de la Membrana/análisis , Proteínas de la Membrana/genética , Persona de Mediana Edad , Orthomyxoviridae/fisiología , Valor Predictivo de las Pruebas , Infecciones del Sistema Respiratorio/diagnóstico , Infecciones del Sistema Respiratorio/genética , Infecciones del Sistema Respiratorio/microbiología , Infecciones del Sistema Respiratorio/virología
4.
Lancet Microbe ; 5(3): e272-e281, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38310908

RESUMEN

BACKGROUND: Viral respiratory tract infections are frequently complicated by secondary bacterial infections. This study aimed to use machine learning to predict the risk of bacterial superinfection in SARS-CoV-2-positive individuals. METHODS: In this prospective, multicentre, observational cohort study done in nine centres in six countries (Australia, Indonesia, Singapore, Italy, Czechia, and France) blood samples and RNA sequencing were used to develop a robust model of predicting secondary bacterial infections in the respiratory tract of patients with COVID-19. Eligible participants were older than 18 years, had known or suspected COVID-19, and symptoms of a recent respiratory infection. A control cohort of participants without COVID-19 who were older than 18 years and with no infection symptoms was also recruited from one Australian centre. In the pre-analysis phase, data were filtered to include only individuals with complete blood transcriptomics and patient data (ie, age, sex, location, and WHO severity score at the time of sample collection). The dataset was then divided randomly (4:1) into a training set (80%) and a test set (20%). Gene expression data in the training set and control cohort were used for differential expression analysis. Differentially expressed genes, along with WHO severity score, location, age, and sex, were used for feature selection with least absolute shrinkage and selection operator (LASSO) in the training set. For LASSO analysis, samples were excluded if gene expression data were not obtained at study admission, no longitudinal clinical information was available, a bacterial infection at the time of study admission was present, or a fungal infection in the absence of a bacterial infection was detected. LASSO regression was performed using three subsets of predictor variables: patient data alone, gene expression data alone, or a combination of patient data and gene expression data. The accuracy of the resultant models was tested on data from the test set. FINDINGS: Between March, 2020, and October, 2021, we recruited 536 SARS-CoV-2-positive individuals and between June, 2013, and January, 2020, we recruited 74 participants into the control cohort. After prefiltering analysis and other exclusions, samples from 158 individuals were analysed in the training set and 47 in the test set. The expression of seven host genes (DAPP1, CST3, FGL2, GCH1, CIITA, UPP1, and RN7SL1) in the blood at the time of study admission was identified by LASSO as predictive of the risk of developing a secondary bacterial infection of the respiratory tract more than 24 h after study admission. Specifically, the expression of these genes in combination with a patient's WHO severity score at the time of study enrolment resulted in an area under the curve of 0·98 (95% CI 0·89-1·00), a true positive rate (sensitivity) of 1·00 (95% CI 1·00-1·00), and a true negative rate (specificity) of 0·94 (95% CI 0·89-1·00) in the test cohort. The combination of patient data and host transcriptomics at hospital admission identified all seven individuals in the training and test sets who developed a bacterial infection of the respiratory tract 5-9 days after hospital admission. INTERPRETATION: These data raise the possibility that host transcriptomics at the time of clinical presentation, together with machine learning, can forward predict the risk of secondary bacterial infections and allow for the more targeted use of antibiotics in viral infection. FUNDING: Snow Medical Research Foundation, the National Health and Medical Research Council, the Jack Ma Foundation, the Helmholtz-Association, the A2 Milk Company, National Institute of Allergy and Infectious Disease, and the Fondazione AIRC Associazione Italiana per la Ricerca contro il Cancro.


Asunto(s)
Infecciones Bacterianas , COVID-19 , Humanos , COVID-19/epidemiología , SARS-CoV-2/genética , Estudios Prospectivos , Australia/epidemiología , Estudios de Cohortes , Perfilación de la Expresión Génica , Aprendizaje Automático , Fibrinógeno
5.
Front Immunol ; 13: 1043219, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36741372

RESUMEN

Background: Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Infected individuals display a wide spectrum of disease severity, as defined by the World Health Organization (WHO). One of the main factors underlying this heterogeneity is the host immune response, with severe COVID-19 often associated with a hyperinflammatory state. Aim: Our current study aimed to pinpoint the specific genes and pathways underlying differences in the disease spectrum and outcomes observed, through in-depth analyses of whole blood transcriptomics in a large cohort of COVID-19 participants. Results: All WHO severity levels were well represented and mild and severe disease displaying distinct gene expression profiles. WHO severity levels 1-4 were grouped as mild disease, and signatures from these participants were different from those with WHO severity levels 6-9 classified as severe disease. Severity level 5 (moderate cases) presented a unique transitional gene signature between severity levels 2-4 (mild/moderate) and 6-9 (severe) and hence might represent the turning point for better or worse disease outcome. Gene expression changes are very distinct when comparing mild/moderate or severe cases to healthy controls. In particular, we demonstrated the hallmark down-regulation of adaptive immune response pathways and activation of neutrophil pathways in severe compared to mild/moderate cases, as well as activation of blood coagulation pathways. Conclusions: Our data revealed discrete gene signatures associated with mild, moderate, and severe COVID-19 identifying valuable candidates for future biomarker discovery.


Asunto(s)
COVID-19 , Humanos , COVID-19/genética , Transcriptoma , SARS-CoV-2 , Perfilación de la Expresión Génica , Neutrófilos
6.
Front Immunol ; 13: 1060438, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36685600

RESUMEN

Purpose: Robust biomarkers that predict disease outcomes amongst COVID-19 patients are necessary for both patient triage and resource prioritisation. Numerous candidate biomarkers have been proposed for COVID-19. However, at present, there is no consensus on the best diagnostic approach to predict outcomes in infected patients. Moreover, it is not clear whether such tools would apply to other potentially pandemic pathogens and therefore of use as stockpile for future pandemic preparedness. Methods: We conducted a multi-cohort observational study to investigate the biology and the prognostic role of interferon alpha-inducible protein 27 (IFI27) in COVID-19 patients. Results: We show that IFI27 is expressed in the respiratory tract of COVID-19 patients and elevated IFI27 expression in the lower respiratory tract is associated with the presence of a high viral load. We further demonstrate that the systemic host response, as measured by blood IFI27 expression, is associated with COVID-19 infection. For clinical outcome prediction (e.g., respiratory failure), IFI27 expression displays a high sensitivity (0.95) and specificity (0.83), outperforming other known predictors of COVID-19 outcomes. Furthermore, IFI27 is upregulated in the blood of infected patients in response to other respiratory viruses. For example, in the pandemic H1N1/09 influenza virus infection, IFI27-like genes were highly upregulated in the blood samples of severely infected patients. Conclusion: These data suggest that prognostic biomarkers targeting the family of IFI27 genes could potentially supplement conventional diagnostic tools in future virus pandemics, independent of whether such pandemics are caused by a coronavirus, an influenza virus or another as yet-to-be discovered respiratory virus.


Asunto(s)
COVID-19 , Subtipo H1N1 del Virus de la Influenza A , Gripe Humana , Humanos , COVID-19/diagnóstico , COVID-19/genética , SARS-CoV-2/genética , Gripe Humana/diagnóstico , Gripe Humana/epidemiología , Gripe Humana/genética , Biomarcadores , Proteínas de la Membrana/genética
7.
Front Immunol ; 12: 634127, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33828550

RESUMEN

Sepsis is associated with a dysregulated inflammatory response to infection. Despite the activation of inflammation, an immune suppression is often observed, predisposing patients to secondary infections. Therapies directed at restoration of immunity may be considered but should be guided by the immune status of the patients. In this paper, we described the use of a high-dimensional flow cytometry (HDCyto) panel to assess the immunophenotype of patients with sepsis. We then isolated peripheral blood mononuclear cells (PBMCs) from patients with septic shock and mimicked a secondary infection by stimulating PBMCs for 4 h in vitro with lipopolysaccharide (LPS) with or without prior exposure to either IFN-γ, or LAG-3Ig. We evaluated the response by means of flow cytometry and high-resolution clustering cum differential analysis and compared the results to PBMCs from healthy donors. We observed a heterogeneous immune response in septic patients and identified two major subgroups: one characterized by hypo-responsiveness (Hypo) and another one by hyper-responsiveness (Hyper). Hypo and Hyper groups showed significant differences in the production of cytokines/chemokine and surface human leukocyte antigen-DR (HLA-DR) expression in response to LPS stimulation, which were observed across all cell types. When pre-treated with either interferon gamma (IFN-γ) or lymphocyte-activation gene 3 (LAG)-3 recombinant fusion protein (LAG-3Ig) prior to LPS stimulation, cells from the Hypo group were shown to be more responsive to both immunostimulants than cells from the Hyper group. Our results demonstrate the importance of patient stratification based on their immune status prior to any immune therapies. Once sufficiently scaled, this approach may be useful for prescribing the right immune therapy for the right patient at the right time, the key to the success of any therapy.


Asunto(s)
Antígenos CD/farmacología , Citometría de Flujo , Inmunofenotipificación , Interferón gamma/farmacología , Leucocitos Mononucleares/efectos de los fármacos , Lipopolisacáridos/farmacología , Monitorización Inmunológica , Choque Séptico/inmunología , Biomarcadores/sangre , Estudios de Casos y Controles , Células Cultivadas , Citocinas/sangre , Antígenos HLA-DR/sangre , Humanos , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/metabolismo , Fenotipo , Valor Predictivo de las Pruebas , Choque Séptico/sangre , Choque Séptico/diagnóstico , Flujo de Trabajo , Proteína del Gen 3 de Activación de Linfocitos
8.
Nat Commun ; 10(1): 3422, 2019 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-31366921

RESUMEN

Severe influenza infection has no effective treatment available. One of the key barriers to developing host-directed therapy is a lack of reliable prognostic factors needed to guide such therapy. Here, we use a network analysis approach to identify host factors associated with severe influenza and fatal outcome. In influenza patients with moderate-to-severe diseases, we uncover a complex landscape of immunological pathways, with the main changes occurring in pathways related to circulating neutrophils. Patients with severe disease display excessive neutrophil extracellular traps formation, neutrophil-inflammation and delayed apoptosis, all of which have been associated with fatal outcome in animal models. Excessive neutrophil activation correlates with worsening oxygenation impairment and predicted fatal outcome (AUROC 0.817-0.898). These findings provide new evidence that neutrophil-dominated host response is associated with poor outcomes. Measuring neutrophil-related changes may improve risk stratification and patient selection, a critical first step in developing host-directed immune therapy.


Asunto(s)
Trampas Extracelulares/inmunología , Gripe Humana/inmunología , Gripe Humana/patología , Activación Neutrófila/inmunología , Neutrófilos/inmunología , Ciclo Celular/inmunología , Femenino , Expresión Génica/genética , Humanos , Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H1N1 del Virus de la Influenza A/aislamiento & purificación , Subtipo H3N2 del Virus de la Influenza A/inmunología , Subtipo H3N2 del Virus de la Influenza A/aislamiento & purificación , Virus de la Influenza B/inmunología , Virus de la Influenza B/aislamiento & purificación , Gripe Humana/mortalidad , Pulmón/inmunología , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Respiración Artificial , Insuficiencia Respiratoria/mortalidad , Insuficiencia Respiratoria/patología , Insuficiencia Respiratoria/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA