Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Virol ; 95(14): e0042921, 2021 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-33952635

RESUMEN

Rift Valley fever phlebovirus (RVFV) has a single-stranded, negative-sense RNA genome, consisting of L, M, and S segments. The virion carries two envelope glycoproteins, Gn and Gc, along with ribonucleoprotein complexes (RNPs), composed of encapsidated genomes carrying N protein and the viral polymerase, L protein. A quantitative analysis of the profile of viral RNA segments packaged into RVFV particles showed that all three genomic RNA segments had similar packaging abilities, whereas among antigenomic RNA segments, the antigenomic S RNA, which serves as the template for the transcription of mRNA expressing the RVFV virulence factor, NSs, displayed a significantly higher packaging ability. To delineate the factor(s) governing the packaging of RVFV RNA segments, we characterized the interactions between Gn and viral RNPs in RVFV-infected cells. Coimmunoprecipitation analysis demonstrated the interaction of Gn with N protein, L protein, and viral RNAs in RVFV-infected cells. Furthermore, UV-cross-linking and immunoprecipitation analysis revealed, for the first time in bunyaviruses, the presence of a direct interaction between Gn and all the viral RNA segments in RVFV-infected cells. Notably, analysis of the ability of Gn to bind to RVFV RNA segments indicated a positive correlation with their respective packaging abilities and highlighted a binding preference of Gn for antigenomic S RNA, among the antigenomic RNA segments, suggesting the presence of a selection mechanism for antigenomic S RNA incorporation into infectious RVFV particles. Collectively, the results of our study illuminate the importance of a direct interaction between Gn and viral RNA segments in determining their efficiency of incorporation into RVFV particles. IMPORTANCE Rift Valley fever phlebovirus, a bunyavirus, is a mosquito-borne, segmented RNA virus that can cause severe disease in humans and ruminants. An essential step in RVFV life cycle is the packaging of viral RNA segments to produce infectious virus particles for dissemination to new hosts. However, there are key gaps in knowledge regarding the mechanisms that regulate viral RNA packaging efficiency in bunyaviruses. Our studies investigating the mechanism of RNA packaging in RVFV revealed the presence of a direct interaction between the viral envelope glycoprotein, Gn, and the viral RNA segments in infected cells, for the first time in bunyaviruses. Furthermore, our data strongly indicate a critical role for the direct interaction between Gn and viral RNAs in determining the efficiency of incorporation of viral RNA segments into RVFV particles. Clarifying the fundamental mechanisms of RNA packaging in RVFV would be valuable for the development of antivirals and live-attenuated vaccines.


Asunto(s)
ARN Viral , Virus de la Fiebre del Valle del Rift/genética , Empaquetamiento del Genoma Viral , Secuencia de Empaquetamiento Viral , Virión/genética , Animales , Línea Celular , Chlorocebus aethiops , Ribonucleoproteínas/metabolismo , Células Vero , Proteínas del Envoltorio Viral/genética
2.
Methods Mol Biol ; 2733: 101-113, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38064029

RESUMEN

Rift Valley fever virus (RVFV) is an important mosquito-borne virus that can cause severe disease manifestations in humans including ocular damage, vision loss, late-onset encephalitis, and hemorrhagic fever. In ruminants, RVFV can cause high mortality rates in young animals and high rates of abortion in pregnant animals resulting in an enormous negative impact on the economy of affected regions. To date, no licensed vaccines in humans or anti-RVFV therapeutics for animal or human use are available. The development of reverse genetics has facilitated the generation of recombinant infectious viruses that serve as powerful tools for investigating the molecular biology and pathogenesis of RVFV. Infectious recombinant RVFV can be rescued entirely from cDNAs containing predetermined mutations in their genomes to investigate virus-host interactions and mechanisms of pathogenesis and generate live-attenuated vaccines. In this chapter, we will describe the experimental procedures for the implementation of RVFV reverse genetics.


Asunto(s)
Fiebre del Valle del Rift , Virus de la Fiebre del Valle del Rift , Animales , Humanos , Virus de la Fiebre del Valle del Rift/genética , Fiebre del Valle del Rift/genética , Fiebre del Valle del Rift/prevención & control , Genética Inversa , Vacunas Atenuadas/genética , Mutación
3.
ACS Infect Dis ; 10(5): 1780-1792, 2024 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-38651692

RESUMEN

The recent COVID-19 pandemic underscored the limitations of currently available direct-acting antiviral treatments against acute respiratory RNA-viral infections and stimulated major research initiatives targeting anticoronavirus agents. Two novel nsp5 protease (MPro) inhibitors have been approved, nirmatrelvir and ensitrelvir, along with two existing nucleos(t)ide analogues repurposed as nsp12 polymerase inhibitors, remdesivir and molnupiravir, but a need still exists for therapies with improved potency and systemic exposure with oral dosing, better metabolic stability, and reduced resistance and toxicity risks. Herein, we summarize our research toward identifying nsp12 inhibitors that led to nucleoside analogues 10e and 10n, which showed favorable pan-coronavirus activity in cell-infection screens, were metabolized to active triphosphate nucleotides in cell-incubation studies, and demonstrated target (nsp12) engagement in biochemical assays.


Asunto(s)
Antivirales , Tratamiento Farmacológico de COVID-19 , Nucleósidos , SARS-CoV-2 , Antivirales/farmacología , Antivirales/química , SARS-CoV-2/efectos de los fármacos , Humanos , Nucleósidos/farmacología , Nucleósidos/química , Animales , Descubrimiento de Drogas , Proteínas no Estructurales Virales/antagonistas & inhibidores , Proteínas no Estructurales Virales/metabolismo , Chlorocebus aethiops , Células Vero , COVID-19/virología , ARN Polimerasa Dependiente de ARN de Coronavirus
4.
Front Cell Infect Microbiol ; 13: 1132757, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36875526

RESUMEN

Rift Valley fever virus (RVFV), a bunyavirus, has a single-stranded, negative-sense tri-segmented RNA genome, consisting of L, M and S RNAs. An infectious virion carries two envelope glycoproteins, Gn and Gc, along with ribonucleoprotein complexes composed of encapsidated viral RNA segments. The antigenomic S RNA, which serves as the template of the mRNA encoding a nonstructural protein, NSs, an interferon antagonist, is also efficiently packaged into RVFV particles. An interaction between Gn and viral ribonucleoprotein complexes, including the direct binding of Gn to viral RNAs, drives viral RNA packaging into RVFV particles. To understand the mechanism of efficient antigenomic S RNA packaging in RVFV, we identified the regions in viral RNAs that directly interact with Gn by performing UV-crosslinking and immunoprecipitation of RVFV-infected cell lysates with anti-Gn antibody followed by high-throughput sequencing analysis (CLIP-seq analysis). Our data suggested the presence of multiple Gn-binding sites in RVFV RNAs, including a prominent Gn-binding site within the 3' noncoding region of the antigenomic S RNA. We found that the efficient packaging of antigenomic S RNA was abrogated in a RVFV mutant lacking a part of this prominent Gn-binding site within the 3' noncoding region. Also, the mutant RVFV, but not the parental RVFV, triggered the early induction of interferon-ß mRNA expression after infection. These data suggest that the direct binding of Gn to the RNA element within the 3' noncoding region of the antigenomic S RNA promoted the efficient packaging of antigenomic S RNA into virions. Furthermore, the efficient packaging of antigenomic S RNA into RVFV particles, driven by the RNA element, facilitated the synthesis of viral mRNA encoding NSs immediately after infection, resulting in the suppression of interferon-ß mRNA expression.


Asunto(s)
Virus de la Fiebre del Valle del Rift , Animales , ARN Viral , ARN Mensajero , Interferón beta , Ribonucleoproteínas
5.
Curr Opin Virol ; 44: 16-25, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32619950

RESUMEN

The Bunyavirales order is the largest group of RNA viruses, which includes important human and animal pathogens, that cause serious diseases. Licensed vaccines are often not available for many of these pathogens. The establishment of bunyavirus reverse genetics systems has facilitated the generation of recombinant infectious viruses, which have been employed as powerful tools for understanding bunyavirus biology and identifying important virulence factors. Technological advances in this area have enabled the development of novel strategies, including codon-deoptimization, viral genome rearrangement and single-cycle replicable viruses, for the generation of live-attenuated vaccine candidates. In this review, we have summarized the current knowledge of the bunyavirus reverse genetics approaches for the generation of live-attenuated vaccine candidates and their evaluation in animal models.


Asunto(s)
Orthobunyavirus/genética , Orthobunyavirus/inmunología , Genética Inversa/métodos , Vacunas Virales/genética , Animales , Modelos Animales de Enfermedad , Genoma Viral , Humanos , Ratones , Orthobunyavirus/patogenicidad , Vacunas Atenuadas/genética , Vacunas Atenuadas/inmunología , Vacunas Virales/inmunología , Factores de Virulencia/genética , Replicación Viral
6.
J Virol Methods ; 272: 113701, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31315022

RESUMEN

Rift Valley Fever phlebovirus (RVFV), genus Phlebovirus, family Phenuiviridae, order Bunyavirales, has a single-stranded, negative-sense RNA genome, consisting of L, M and S segments. Here, we report the establishment of a strand-specific, quantitative reverse transcription (RT)-PCR assay system that can selectively distinguish between the genomic and antigenomic RNAs of each of the three viral RNA segments produced in RVFV-infected cells. To circumvent the obstacle of primer-independent cDNA synthesis during RT, we used a tagged, strand-specific RT primer, carrying a non-viral 'tag' sequence at the 5' end, which ensured the strand-specificity through the selective amplification of only the tagged cDNA in the real-time PCR assay. We used this assay system to examine the kinetics of intracellular accumulation of genomic and antigenomic viral RNAs in mammalian cells infected with the MP-12 strain of RVFV. The genomic RNA copy numbers, for all three viral RNA segments, were higher than that of their corresponding antigenomic RNAs throughout the time-course of infection, with a notable exception, wherein the M segment genomic and antigenomic RNAs exhibited similar copy numbers at specific times post-infection. Overall, this assay system could be a useful tool to gain an insight into the mechanisms of RNA replication and packaging in RVFV.


Asunto(s)
Genómica/métodos , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Fiebre del Valle del Rift/diagnóstico , Virus de la Fiebre del Valle del Rift/genética , Virus de la Fiebre del Valle del Rift/aislamiento & purificación , Animales , Línea Celular , Chlorocebus aethiops , ADN Complementario , Humanos , Cinética , Técnicas de Diagnóstico Molecular , ARN Viral/genética , ARN Viral/aislamiento & purificación , Fiebre del Valle del Rift/virología , Sensibilidad y Especificidad , Células Vero , Replicación Viral
7.
Virus Res ; 216: 55-65, 2016 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-26022573

RESUMEN

Rift Valley fever virus (RVFV) is an arbovirus circulating between ruminants and mosquitoes to maintain its enzootic cycle. Humans are infected with RVFV through mosquito bites or direct contact with materials of infected animals. The virus causes Rift Valley fever (RVF), which was first recognized in the Great Rift Valley of Kenya in 1931. RVF is characterized by a febrile illness resulting in a high rate of abortions in ruminants and an acute febrile illness, followed by fatal hemorrhagic fever and encephalitis in humans. Initially, the virus was restricted to the eastern region of Africa, but the disease has now spread to southern and western Africa, as well as outside of the African continent, e.g., Madagascar, Saudi Arabia and Yemen. There is a serious concern that the virus may spread to other areas, such as North America and Europe. As vaccination is an effective tool to control RVFV epidemics, formalin-inactivated vaccines and live-attenuated RVFV vaccines have been used in endemic areas. The formalin-inactivated vaccines require boosters for effective protection, whereas the live-attenuated vaccines enable the induction of protective immunity by a single vaccination. However, the use of live-attenuated RVFV vaccines for large human populations having a varied health status is of concern, because of these vaccines' residual neuro-invasiveness and neurovirulence. Recently, novel vaccine candidates have been developed using replication-defective RVFV that can undergo only a single round of replication in infected cells. The single-cycle replicable RVFV does not cause systemic infection in immunized hosts, but enables the conferring of protective immunity. This review summarizes the properties of various RVFV vaccines and recent progress on the development of the single-cycle replicable RVFV vaccines.


Asunto(s)
Fiebre del Valle del Rift/virología , Virus de la Fiebre del Valle del Rift/inmunología , Vacunas Virales/inmunología , Replicación Viral , Animales , Humanos , Fiebre del Valle del Rift/inmunología , Fiebre del Valle del Rift/prevención & control , Virus de la Fiebre del Valle del Rift/genética , Virus de la Fiebre del Valle del Rift/fisiología , Vacunas Virales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA