Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Exp Bot ; 63(14): 5017-33, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22936829

RESUMEN

Linking plant phenotype to gene and protein expression and also to metabolite synthesis and accumulation is one of the main challenges for improving agricultural production worldwide. Such a challenge is particularly relevant to crop nitrogen use efficiency (NUE). Here, the differences in leaf gene transcript, protein, and metabolite accumulation in maize subjected to long-term nitrogen (N)-deficient growth conditions at two important stages of plant development have been studied. The impact of N deficiency was examined at the transcriptomic, proteomic, and metabolomic levels. It was found that a number of key plant biological functions were either up- or down-regulated when N was limiting, including major alterations to photosynthesis, carbon (C) metabolism, and, to a lesser extent, downstream metabolic pathways. It was also found that the impact of the N deficiency stress resembled the response of plants to a number of other biotic and abiotic stresses, in terms of transcript, protein, and metabolite accumulation. The genetic and metabolic alterations were different during the N assimilation and the grain-filling period, indicating that plant development is an important component for identifying the key elements involved in the control of plant NUE. It was also found that integration of the three 'omics' studies is not straightforward, since different levels of regulation seem to occur in a stepwise manner from gene expression to metabolite accumulation. The potential use of these 'omics' studies is discussed with a view to improve our understanding of whole plant nitrogen economics, which should have applications in breeding and agronomy.


Asunto(s)
Perfilación de la Expresión Génica , Metaboloma , Nitrógeno/metabolismo , Proteínas de Plantas/genética , Proteoma/genética , Zea mays/genética , Zea mays/metabolismo , Cromatografía Liquida , Análisis de Secuencia por Matrices de Oligonucleótidos , Espectrometría de Masas en Tándem , Zea mays/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA