Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Cell ; 159(3): 623-34, 2014 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-25417112

RESUMEN

S-nitrosylation is a ubiquitous protein modification emerging as a principal mechanism of nitric oxide (NO)-mediated signal transduction and cell function. S-nitrosylases can use NO synthase (NOS)-derived NO to modify selected cysteines in target proteins. Despite proteomic identification of over a thousand S-nitrosylated proteins, few S-nitrosylases have been identified. Moreover, mechanisms underlying site-selective S-nitrosylation and the potential role of specific sequence motifs remain largely unknown. Here, we describe a stimulus-inducible, heterotrimeric S-nitrosylase complex consisting of inducible NOS (iNOS), S100A8, and S100A9. S100A9 exhibits transnitrosylase activity, shuttling NO from iNOS to the target protein, whereas S100A8 and S100A9 coordinately direct site selection. A family of proteins S-nitrosylated by iNOS-S100A8/A9 were revealed by proteomic analysis. A conserved I/L-X-C-X2-D/E motif was necessary and sufficient for iNOS-S100A8/A9-mediated S-nitrosylation. These results reveal an elusive parallel between protein S-nitrosylation and phosphorylation, namely, stimulus-dependent posttranslational modification of selected targets by primary sequence motif recognition.


Asunto(s)
Complejos Multiproteicos/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Óxido Nítrico/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas/química , Proteínas/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Calgranulina A/metabolismo , Calgranulina B/metabolismo , Gliceraldehído-3-Fosfato Deshidrogenasas/química , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Humanos , Interferón gamma/metabolismo , Lipoproteínas LDL/metabolismo , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Alineación de Secuencia
2.
Nature ; 542(7641): 357-361, 2017 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-28178239

RESUMEN

Metabolic pathways that contribute to adiposity and ageing are activated by the mammalian target of rapamycin complex 1 (mTORC1) and p70 ribosomal protein S6 kinase 1 (S6K1) axis. However, known mTORC1-S6K1 targets do not account for observed loss-of-function phenotypes, suggesting that there are additional downstream effectors of this pathway. Here we identify glutamyl-prolyl-tRNA synthetase (EPRS) as an mTORC1-S6K1 target that contributes to adiposity and ageing. Phosphorylation of EPRS at Ser999 by mTORC1-S6K1 induces its release from the aminoacyl tRNA multisynthetase complex, which is required for execution of noncanonical functions of EPRS beyond protein synthesis. To investigate the physiological function of EPRS phosphorylation, we generated Eprs knock-in mice bearing phospho-deficient Ser999-to-Ala (S999A) and phospho-mimetic (S999D) mutations. Homozygous S999A mice exhibited low body weight, reduced adipose tissue mass, and increased lifespan, similar to S6K1-deficient mice and mice with adipocyte-specific deficiency of raptor, an mTORC1 constituent. Substitution of the EprsS999D allele in S6K1-deficient mice normalized body mass and adiposity, indicating that EPRS phosphorylation mediates S6K1-dependent metabolic responses. In adipocytes, insulin stimulated S6K1-dependent EPRS phosphorylation and release from the multisynthetase complex. Interaction screening revealed that phospho-EPRS binds SLC27A1 (that is, fatty acid transport protein 1, FATP1), inducing its translocation to the plasma membrane and long-chain fatty acid uptake. Thus, EPRS and FATP1 are terminal mTORC1-S6K1 axis effectors that are critical for metabolic phenotypes.


Asunto(s)
Adiposidad , Aminoacil-ARNt Sintetasas/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Adaptadoras Transductoras de Señales/deficiencia , Adipocitos/metabolismo , Envejecimiento/metabolismo , Aminoacil-ARNt Sintetasas/química , Aminoacil-ARNt Sintetasas/genética , Animales , Peso Corporal , Membrana Celular/metabolismo , Proteínas de Transporte de Ácidos Grasos/metabolismo , Ácidos Grasos/química , Ácidos Grasos/metabolismo , Femenino , Insulina/metabolismo , Longevidad/genética , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Mutación , Tamaño de los Órganos , Fosforilación , Fosfoserina/metabolismo , Unión Proteica , Transporte de Proteínas , Proteína Reguladora Asociada a mTOR , Proteínas Quinasas S6 Ribosómicas 90-kDa/deficiencia
3.
Nat Commun ; 15(1): 4284, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769304

RESUMEN

Hypomyelinating leukodystrophy (HLD) is an autosomal recessive disorder characterized by defective central nervous system myelination. Exome sequencing of two siblings with severe cognitive and motor impairment and progressive hypomyelination characteristic of HLD revealed homozygosity for a missense single-nucleotide variant (SNV) in EPRS1 (c.4444 C > A; p.Pro1482Thr), encoding glutamyl-prolyl-tRNA synthetase, consistent with HLD15. Patient lymphoblastoid cell lines express markedly reduced EPRS1 protein due to dual defects in nuclear export and cytoplasmic translation of variant EPRS1 mRNA. Variant mRNA exhibits reduced METTL3 methyltransferase-mediated writing of N6-methyladenosine (m6A) and reduced reading by YTHDC1 and YTHDF1/3 required for efficient mRNA nuclear export and translation, respectively. In contrast to current models, the variant does not alter the sequence of m6A target sites, but instead reduces their accessibility for modification. The defect was rescued by antisense morpholinos predicted to expose m6A sites on target EPRS1 mRNA, or by m6A modification of the mRNA by METTL3-dCas13b, a targeted RNA methylation editor. Our bioinformatic analysis predicts widespread occurrence of SNVs associated with human health and disease that similarly alter accessibility of distal mRNA m6A sites. These results reveal a new RNA-dependent etiologic mechanism by which SNVs can influence gene expression and disease, consequently generating opportunities for personalized, RNA-based therapeutics targeting these disorders.


Asunto(s)
Adenosina , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias , Homocigoto , Metiltransferasas , Mutación Missense , ARN Mensajero , Femenino , Humanos , Masculino , Adenosina/análogos & derivados , Adenosina/metabolismo , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/genética , Metiltransferasas/genética , Metiltransferasas/metabolismo , Proteínas del Tejido Nervioso , Factores de Empalme de ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
4.
Nat Commun ; 14(1): 3385, 2023 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-37296097

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, generates multiple protein-coding, subgenomic RNAs (sgRNAs) from a longer genomic RNA, all bearing identical termini with poorly understood roles in regulating viral gene expression. Insulin and interferon-gamma, two host-derived, stress-related agents, and virus spike protein, induce binding of glutamyl-prolyl-tRNA synthetase (EPRS1), within an unconventional, tetra-aminoacyl-tRNA synthetase complex, to the sgRNA 3'-end thereby enhancing sgRNA expression. We identify an EPRS1-binding sarbecoviral pan-end activating RNA (SPEAR) element in the 3'-end of viral RNAs driving agonist-induction. Translation of another co-terminal 3'-end feature, ORF10, is necessary for SPEAR-mediated induction, independent of Orf10 protein expression. The SPEAR element enhances viral programmed ribosomal frameshifting, thereby expanding its functionality. By co-opting noncanonical activities of a family of essential host proteins, the virus establishes a post-transcriptional regulon stimulating global viral RNA translation. A SPEAR-targeting strategy markedly reduces SARS-CoV-2 titer, suggesting a pan-sarbecoviral therapeutic modality.


Asunto(s)
ARN Viral , Regulón , SARS-CoV-2 , ARN Subgenómico , Humanos , COVID-19/genética , Regulón/genética , ARN Viral/genética , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Proteínas Virales/metabolismo , ARN Subgenómico/genética
5.
EMBO J ; 27(24): 3311-21, 2008 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-19008854

RESUMEN

Type I interferon (IFN) inhibits, by an unknown mechanism, the replication of human papillomaviruses (HPV), which are major human pathogens, Here, we present evidence that P56 (a protein), the expression of which is strongly induced by IFN, double-stranded RNA and viruses, mediates the anti-HPV effect of IFN. Ectopic expression of P56 inhibited HPV DNA replication and its ablation in IFN-treated cells alleviated the inhibitory effect of IFN on HPV DNA replication. Protein-protein interaction and mutational analyses established that the antiviral effect of P56 was mediated by its direct interaction with the DNA replication origin-binding protein E1 of several strains of HPV, through the tetratricopeptide repeat 2 in the N-terminal region of P56 and the C-terminal region of E1. In vivo, the interaction with P56, a cytoplasmic protein, caused translocation of E1 from the nucleus to the cytoplasm. In vitro, recombinant P56, or a small fragment derived from it, inhibited the DNA helicase activity of E1 and E1-mediated HPV DNA replication. These observations delineate the molecular mechanism of IFN's antiviral action against HPV.


Asunto(s)
Replicación del ADN , Interferones/inmunología , Proteínas Oncogénicas Virales/antagonistas & inhibidores , Papillomaviridae/fisiología , Factores de Transcripción/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Línea Celular , Núcleo Celular/química , Citoplasma/química , Análisis Mutacional de ADN , Humanos , Mutagénesis Sitio-Dirigida , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Mapeo de Interacción de Proteínas , Transporte de Proteínas , Proteínas de Unión al ARN
6.
iScience ; 24(3): 102215, 2021 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-33748704

RESUMEN

Aminoacyl-tRNA synthetases (AARS) participate in decoding the genome by catalyzing conjugation of amino acids to their cognate tRNAs. During evolution, biochemical and environmental conditions markedly influenced the sequence and structure of the 20 AARSs, revealing adaptations dictating canonical and orthogonal activities. Here, we investigate the function of the appended Zn2+-binding domain (ZBD) in the bifunctional AARS, glutamyl-prolyl-tRNA synthetase (GluProRS). We developed GluProRS mutant mice by CRISPR-Cas9 with a deletion of 29 C-terminal amino acids, including two of four Zn2+-coordinating cysteines. Homozygous ZBD mutant mice die before embryonic day 12.5, but heterozygous mice are healthy. ZBD disruption profoundly reduces GluProRS canonical function by dual mechanisms: it induces rapid proteasomal degradation of the protein and inhibits ProRS aminoacylation activity, likely by sub-optimal positioning of ATP in the spatially adjacent catalytic domain. Collectively, our studies reveal the ZBD as a critical determinant of ProRS activity and GluProRS stability in vitro and in vivo.

7.
RNA Biol ; 7(1): 43-55, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20009516

RESUMEN

Muscleblind-like (MBNL) proteins have been shown to regulate pre-mRNA alternative splicing, and MBNL1 has been implicated in regulating fetal-to-adult transitions in alternative splicing in the heart. MBNL1 is highly conserved, exhibiting more than 95% identity at the amino acid level between birds and mammals. To investigate MBNL1 expression during embryonic heart development, we examined MBNL1 transcript and protein expression in the embryonic chicken heart from the formation of the primitive heart tube through cardiac morphogenesis (embryonic days 1.5 through 8). MBNL1 transcript levels remained steady throughout these stages, whereas MBNL1 protein levels increased and exhibited a shift in isoforms. MBNL1 has several alternatively spliced exons. Using RT-PCR, we determined that the inclusion of one of these, exon 5, decreases dramatically during cardiac morphogenesis. This developmental transition is conserved in mice. Functional analyses of MBNL1 isoforms containing or lacking exon 5-encoded sequences revealed that exon 5 is important for the regulation of the subcellular localization, RNA binding affinity, and alternative splicing activity of MBNL1 proteins. A second MBNL protein, MBNL2, is also expressed in the embryonic heart. We found that MBNL2 exon 5, which is paralogous to MBNL1 exon 5, is similarly regulated during embryonic heart development. Analysis of MBNL1 and MBNL2 transcripts in several embryonic tissues in chicken and mouse indicate that exon 5 alternative splicing is highly conserved and tissue-specific. Thus, we propose that conserved developmental stage- and tissue-specific alternative splicing of MBNL transcripts is an important mechanism by which MBNL activity is regulated during embryonic development.


Asunto(s)
Empalme Alternativo/genética , Regulación del Desarrollo de la Expresión Génica , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Animales , Embrión de Pollo , Evolución Molecular , Exones/genética , Corazón/embriología , Humanos , Ratones , Especificidad de Órganos/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transporte de Proteínas , ARN Mensajero/metabolismo , Fracciones Subcelulares/metabolismo
8.
J Mol Cell Cardiol ; 46(3): 395-404, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19073192

RESUMEN

During the transition from juvenile to adult life, the heart undergoes programmed remodeling at the levels of transcription and alternative splicing. Members of the CUG-BP and ETR-3-like factor (CELF) family have been implicated in driving developmental transitions in alternative splicing of cardiac transcripts during maturation of the heart. Here, we investigated the timing of the requirement for CELF activity in the postnatal heart using a previously described transgenic mouse model (MHC-CELFDelta). In MHC-CELFDelta mice, nuclear CELF activity has been disrupted specifically in the heart by cardiac-specific expression of a dominant negative CELF protein. Longitudinal analyses of two lines of MHC-CELFDelta mice with differing levels of dominant negative protein expression demonstrate that CELF splicing activity is required for healthy cardiac function during juvenile, but not adult, life. Cardiac function, chamber dilation, and heart size all recover with age in the mild line of MHC-CELFDelta mice without a loss of dominant negative protein expression or change in expression of endogenous CELF proteins or known CELF antagonists. This is the first example of a mouse model with genetically induced cardiomyopathy that spontaneously recovers without intervention. Our results suggest that CELF proteins are key players in the integrated gene expression program involved in postnatal cardiac remodeling and maturation.


Asunto(s)
Envejecimiento/metabolismo , Empalme Alternativo/fisiología , Proteína delta de Unión al Potenciador CCAAT/biosíntesis , Corazón/crecimiento & desarrollo , Proteínas Musculares/biosíntesis , Miocardio/metabolismo , Envejecimiento/genética , Animales , Proteína delta de Unión al Potenciador CCAAT/genética , Cardiomiopatías/genética , Cardiomiopatías/metabolismo , Femenino , Masculino , Ratones , Ratones Transgénicos , Proteínas Musculares/genética , Tamaño de los Órganos/fisiología , Especificidad de Órganos/fisiología
9.
Artículo en Inglés | MEDLINE | ID: mdl-29152905

RESUMEN

The interferon (IFN)-γ-activated inhibitor of translation (GAIT) system directs transcript-selective translational control of functionally related genes. In myeloid cells, IFN-γ induces formation of a multiprotein GAIT complex that binds structural GAIT elements in the 3'-untranslated regions (UTRs) of multiple inflammation-related mRNAs, including ceruloplasmin and VEGF-A, and represses their translation. The human GAIT complex is a heterotetramer containing glutamyl-prolyl tRNA synthetase (EPRS), NS1-associated protein 1 (NSAP1), ribosomal protein L13a (L13a), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). A network of IFN-γ-stimulated kinases regulates recruitment and assembly of GAIT complex constituents. Activation of cyclin-dependent kinase 5 (Cdk5), mammalian target of rapamycin complex 1 (mTORC1), and S6K1 kinases induces EPRS release from its parental multiaminoacyl tRNA synthetase complex to join NSAP1 in a 'pre-GAIT' complex. Subsequently, the DAPK-ZIPK kinase axis phosphorylates L13a, inducing release from the 60S ribosomal subunit and binding to GAPDH. The subcomplexes join to form the functional GAIT complex. Each constituent has a distinct role in the GAIT system. EPRS binds the GAIT element in target mRNAs, NSAP1 negatively regulates mRNA binding, L13a binds eIF4G to block ribosome recruitment, and GAPDH shields L13a from proteasomal degradation. The GAIT system is susceptible to genetic and condition-specific regulation. An N-terminus EPRS truncate is a dominant-negative inhibitor ensuring a 'translational trickle' of target transcripts. Also, hypoxia and oxidatively modified lipoproteins regulate GAIT activity. Mouse models exhibiting absent or genetically modified GAIT complex constituents are beginning to elucidate the physiological role of the GAIT system, particularly in the resolution of chronic inflammation. Finally, GAIT-like systems in proto-chordates suggests an evolutionarily conserved role of the pathway in innate immunity. WIREs RNA 2018, 9:e1441. doi: 10.1002/wrna.1441 This article is categorized under: Translation > Translation Regulation RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes Regulatory RNAs/RNAi/Riboswitches > Riboswitches.


Asunto(s)
Aminoacil-ARNt Sintetasas/metabolismo , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Interferón gamma/metabolismo , Biosíntesis de Proteínas , Proteínas Ribosómicas/metabolismo , Regiones no Traducidas 3' , Animales , Humanos
10.
J Virol ; 81(16): 8656-65, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17553874

RESUMEN

The interferon-stimulated genes (ISGs) ISG56 and ISG54 are strongly induced in cultured cells by type I interferons (IFNs), viruses, and double-stranded RNA (dsRNA), which activate their transcription by various signaling pathways. Here we studied the stimulus-dependent induction of both genes in vivo. dsRNA, which is generated during virus infection, induced the expression of both genes in all organs examined. Induction was not seen in STAT1-deficient mice, indicating that dsRNA-induced gene expression requires endogenous IFN. We further examined the regulation of these ISGs in several organs from mice injected with dsRNA or IFN-beta. Both ISG56 and ISG54 were widely expressed and at comparable levels. However, in organs isolated from mice injected with IFN-alpha the expression of ISG54 was reduced and more restricted in distribution compared with the expression level and distribution of ISG56. When we began to study specific cell types, splenic B cells showed ISG54 but not ISG56 expression in response to all agonists. Finally, in livers isolated from mice infected with vesicular stomatitis virus, the expression of ISG56, but not ISG54, was induced; this difference was observed at both protein and mRNA levels. These studies have revealed unexpected complexity in IFN-stimulated gene induction in vivo. For the first time we showed that the two closely related genes are expressed in a tissue-specific and inducer-specific manner. Furthermore, our findings provide the first evidence of a differential pattern of expression of ISG54 and ISG56 genes by IFN-alpha and IFN-beta.


Asunto(s)
Regulación de la Expresión Génica , Interferón-alfa/fisiología , Interferón beta/fisiología , Factores de Transcripción/genética , Animales , Anticuerpos/inmunología , Linfocitos B/inmunología , Expresión Génica/efectos de los fármacos , Interferón-alfa/farmacología , Interferón beta/farmacología , Masculino , Ratones , Ratones Noqueados , ARN Bicatenario/farmacología , Factor de Transcripción STAT1/genética , Linfocitos T/inmunología , Distribución Tisular , Factores de Transcripción/análisis , Factores de Transcripción/metabolismo , Activación Transcripcional , Regulación hacia Arriba , Virus de la Estomatitis Vesicular Indiana
11.
J Virol ; 81(2): 860-71, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17079283

RESUMEN

The interferon (IFN)-stimulated genes (ISGs) ISG-49, ISG-54, and ISG-56 are highly responsive to viral infection, yet the regulation and function of these genes in vivo are unknown. We examined the simultaneous regulation of these ISGs in the brains of mice during infection with either lymphocytic choriomeningitis virus (LCMV) or West Nile virus (WNV). Expression of the ISG-49 and ISG-56 genes increased significantly during LCMV infection, being widespread and localized predominantly to common as well as distinct neuronal populations. Expression of the ISG-54 gene also increased but to lower levels and with a more restricted distribution. Although expression of the ISG-49, ISG-54, and ISG-56 genes was increased in the brains of LCMV-infected STAT1 and STAT2 knockout (KO) mice, this was blunted, delayed, and restricted to the choroid plexus, meninges, and endothelium. ISG-56 protein was regulated in parallel with the corresponding RNA transcript in the brain during LCMV infection in wild-type and STAT KO mice. Similar changes in ISG-49, ISG-54, and ISG-56 RNA levels and ISG-56 protein levels were observed in the brains of wild-type mice following infection with WNV. Thus, the ISG-49, ISG-54, and ISG-56 genes are coordinately upregulated in the brain during LCMV and WNV infection; this upregulation, in the case of LCMV, was totally (neurons) or partially (non-neurons) dependent on the IFN-signaling molecules STAT1 and STAT2. These findings suggest a dominant role for the ISG-49, ISG-54, and ISG-56 genes in the host response to different viruses in the central nervous system, where, particularly in neurons, these genes may have nonredundant functions.


Asunto(s)
Encéfalo/metabolismo , Proteínas Portadoras/metabolismo , Virus de la Coriomeningitis Linfocítica/patogenicidad , Proteínas/metabolismo , Regulación hacia Arriba , Virus del Nilo Occidental/patogenicidad , Proteínas Adaptadoras Transductoras de Señales , Animales , Proteínas Reguladoras de la Apoptosis , Encéfalo/citología , Proteínas Portadoras/genética , Enfermedades Virales del Sistema Nervioso Central/inmunología , Enfermedades Virales del Sistema Nervioso Central/virología , Femenino , Péptidos y Proteínas de Señalización Intracelular , Coriomeningitis Linfocítica/inmunología , Coriomeningitis Linfocítica/virología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/metabolismo , Proteínas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT1/metabolismo , Factor de Transcripción STAT2/genética , Factor de Transcripción STAT2/metabolismo , Fiebre del Nilo Occidental/inmunología , Fiebre del Nilo Occidental/virología
12.
J Biol Chem ; 281(45): 34064-71, 2006 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-16973618

RESUMEN

Human P54 and P56 proteins are tetratricopeptide proteins that are encoded by two closely related genes, ISG54 and ISG56. These genes are induced strongly but transiently when cells are treated with interferons or double-stranded RNA or infected with a variety of viruses. We observed that, although double-stranded RNA or Sendai virus infection induced the two genes with similar kinetics, their induction kinetics in response to interferon-beta were quite different. The induction kinetics by virus infection were also different between two cell lines. Functionally the two proteins were similar. Like P56, P54 bound to the translation initiation factor eIF3 and inhibited translation. However, unlike P56, P54 bound to both the "e" and the "c" subunits of eIF3. Consequently, P54 inhibited two functions of eIF3. Like P56, it inhibited the ability of eIF3 to stabilize the eIF2 x GTP x Met-tRNA(i) ternary complex. But in addition, it also inhibited the formation of the 48 S pre-initiation complex between the 40 S ribosomal subunit and the 20 S complex composed of eIF3, ternary complex, eIF4F, and mRNA. Thus, although similar in structure, the human P54 and P56 proteins are induced differently and function differently.


Asunto(s)
Factor 3 de Iniciación Eucariótica/metabolismo , Biosíntesis de Proteínas , Proteínas/metabolismo , Factores de Transcripción/biosíntesis , Proteínas Adaptadoras Transductoras de Señales , Proteínas Reguladoras de la Apoptosis , Células Cultivadas/metabolismo , Células Cultivadas/virología , Factor 3 de Iniciación Eucariótica/genética , Fibrosarcoma/tratamiento farmacológico , Fibrosarcoma/metabolismo , Fibrosarcoma/virología , Humanos , Inmunoprecipitación , Interferón beta/farmacología , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/virología , Modelos Biológicos , Plásmidos , ARN Bicatenario/fisiología , ARN de Transferencia de Metionina/metabolismo , Proteínas de Unión al ARN , Proteínas Recombinantes , Ribonucleasas , Ribosomas/metabolismo , Virus Sendai/fisiología , Transfección
13.
Virology ; 340(1): 116-24, 2005 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-16023166

RESUMEN

Mammalian cells respond to virus infection or other viral stresses, such as double-stranded (ds) RNA and interferons (IFN), by robust and rapid induction of viral stress-inducible proteins. The induction and actions of one such protein, the human P56, have been extensively studied. However, little is known about the distantly related mouse proteins, MuP56 and MuP54. Here, we report that, in mouse cells, they could be induced by IFN, dsRNA or Sendai virus infection. MuP56 and MuP54 inhibited protein synthesis in vitro by binding to the "c", but not the "e", subunit of the translation initiation factor, eIF-3. The N-terminal region of the MuP54 was sufficient for inhibiting translation, but it and the corresponding region of MuP56 bound to two different regions of eIF3c. Thus, members of the human and murine P56 family have similar but non-identical functions.


Asunto(s)
Proteínas de Choque Térmico/metabolismo , Virus Sendai/fisiología , Animales , Anticuerpos , Línea Celular Tumoral , Factor 3 de Iniciación Eucariótica/metabolismo , Fibroblastos , Fibrosarcoma , Proteínas de Choque Térmico/biosíntesis , Proteínas de Choque Térmico/genética , Humanos , Interferón beta/genética , Ratones , Biosíntesis de Proteínas , ARN Bicatenario/genética , Transfección
14.
J Biol Chem ; 280(5): 3433-40, 2005 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-15561726

RESUMEN

Members of the p56 family of mammalian proteins are strongly induced in virus-infected cells and in cells treated with interferons or double-stranded RNA. Previously, we have reported that human p56 inhibits initiation of translation by binding to the "e" subunit of eukaryotic initiation factor 3 (eIF3) and subsequently interfering with the eIF3/eIF2.GTP.Met-tRNAi (ternary complex) interaction. Here we report that mouse p56 also interferes with eIF3 functions and inhibits translation. However, the murine protein binds to the "c" subunit, not the "e" subunit, of eIF3. Consequently, it has only a marginal effect on eIF3.ternary complex interaction. Instead, the major inhibitory effect of mouse p56 is manifested at a different step of translation initiation, namely the binding of eIF4F to the 40 S ribosomal subunit.eIF3.ternary complex. Thus, mouse and human p56 proteins block different functions of eIF3 by binding to its different subunits.


Asunto(s)
Proteínas Portadoras/metabolismo , Factor 3 de Iniciación Eucariótica/metabolismo , Biosíntesis de Proteínas/fisiología , Proteínas Adaptadoras Transductoras de Señales , Secuencia de Aminoácidos , Animales , Proteínas Portadoras/genética , Línea Celular Tumoral , Factor 3 de Iniciación Eucariótica/genética , Fibrosarcoma , Humanos , Ratones , Datos de Secuencia Molecular , Subunidades de Proteína/metabolismo , Proteínas , Proteínas de Unión al ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA