Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Biol Reprod ; 90(5): 109, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24695630

RESUMEN

Immune-privileged Sertoli cells (SCs) exhibit long-term survival after allotransplantation or xenotransplantation, suggesting they can be used as a vehicle for cell-based gene therapy. Previously, we demonstrated that SCs engineered to secrete insulin by using an adenoviral vector normalized blood glucose levels in diabetic mice. However, the expression of insulin was transient, and the use of immunocompromised mice did not address the question of whether SCs can stably express insulin in immunocompetent animals. Thus, the objective of the current study was to use a lentiviral vector to achieve stable expression of insulin in SCs and test the ability of these cells to survive after allotransplantation. A mouse SC line transduced with a recombinant lentiviral vector containing furin-modified human proinsulin cDNA (MSC-EhI-Zs) maintained stable insulin expression in vitro. Allotransplantation of MSC-EhI-Zs cells into diabetic BALB/c mice demonstrated 88% and 75% graft survival rates at 20 and 50 days post-transplantation, respectively. Transplanted MSC-EhI-Zs cells continued to produce insulin mRNA throughout the study (i.e., 50 days); however, insulin protein was detected only in patches of cells within the grafts. Consistent with low insulin protein detection, there was no significant change in blood glucose levels in the transplant recipients. Nevertheless, MSC-EhI-Zs cells isolated from the grafts continued to express insulin protein in culture. Collectively, this demonstrates that MSC-EhI-Zs cells stably expressed insulin and survived allotransplantation without immunosuppression. This further strengthens the use of SCs as targets for cell-based gene therapy for the treatment of numerous chronic diseases, especially those that require basal protein expression.


Asunto(s)
Diabetes Mellitus Experimental/terapia , Proinsulina/metabolismo , Células de Sertoli/trasplante , Animales , Línea Celular , Supervivencia Celular/fisiología , Ingeniería Genética/métodos , Terapia Genética/métodos , Inmunohistoquímica , Masculino , Ratones Endogámicos BALB C , Proinsulina/genética , ARN/química , ARN/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células de Sertoli/metabolismo
2.
Mol Reprod Dev ; 81(6): 552-66, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24659575

RESUMEN

In vitro embryo production is important for research in animal reproduction, embryo transfer, transgenics, and cloning. Yet, in vitro-fertilized (IVF) embryos are generally developmentally delayed and are inferior to in vivo-derived (IVV) embryos; this discrepancy is likely a result of aberrant gene expression. Transcription of three genes implicated to be important in normal preimplantation embryo development, TRIM28, SETDB1, and TP53, was determined by quanitative PCR in IVF, somatic-cell nuclear transfer (SCNT), parthenogenetic, and IVV porcine oocytes and embryos. There was no difference in TRIM28 or SETDB1 abundance between oocytes matured in vitro versus in vivo (P > 0.05), whereas TP53 levels were higher in in vitro-matured oocytes. TRIM28 increased from metaphase-II oocytes to the 4-cell and blastocyst stages in IVF embryos, whereas IVV embryos showed a reduction in TRIM28 abundance from maturation throughout development. The relative abundance of TP53 increased by the blastocyst stage in all treatment groups, but was higher in IVF embryos compared to IVV and SCNT embryos. In contrast, SETDB1 transcript levels decreased from the 2-cell to blastocyst stage in all treatments. For each gene analyzed, SCNT embryos of both hard-to-clone and easy-to-clone cell lines were more comparable to IVV than IVF embryos. Knockdown of TRIM28 also had no effect on blastocyst development or expression of SETDB1 or TP53. Thus, TRIM28, SETDB1, and TP53 are dynamically expressed in porcine oocytes and embryos. Furthermore, TRIM28 and TP53 abundances in IVV and SCNT embryos are similar, but different from quantities in IVF embryos.


Asunto(s)
Blastocisto/metabolismo , Clonación de Organismos , Fertilización In Vitro , Regulación del Desarrollo de la Expresión Génica , Técnicas de Transferencia Nuclear , Proteína Metiltransferasas/biosíntesis , Proteínas Represoras/biosíntesis , Proteína p53 Supresora de Tumor/biosíntesis , Animales , Blastocisto/patología , Femenino , Partenogénesis , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA