Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(22): e2216304120, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37216558

RESUMEN

The oral microbiome is critical to human health and disease, yet the role that host salivary proteins play in maintaining oral health is unclear. A highly expressed gene in human salivary glands encodes the lectin zymogen granule protein 16 homolog B (ZG16B). Despite the abundance of this protein, its interaction partners in the oral microbiome are unknown. ZG16B possesses a lectin fold, but whether it binds carbohydrates is unclear. We postulated that ZG16B would bind microbial glycans to mediate recognition of oral microbes. To this end, we developed a microbial glycan analysis probe (mGAP) strategy based on conjugating the recombinant protein to fluorescent or biotin reporter functionality. Applying the ZG16B-mGAP to dental plaque isolates revealed that ZG16B predominantly binds to a limited set of oral microbes, including Streptococcus mitis, Gemella haemolysans, and, most prominently, Streptococcus vestibularis. S. vestibularis is a commensal bacterium widely distributed in healthy individuals. ZG16B binds to S. vestibularis through the cell wall polysaccharides attached to the peptidoglycan, indicating that the protein is a lectin. ZG16B slows the growth of S. vestibularis with no cytotoxicity, suggesting that it regulates S. vestibularis abundance. The mGAP probes also revealed that ZG16B interacts with the salivary mucin MUC7. Analysis of S. vestibularis and MUC7 with ZG16B using super-resolution microscopy supports ternary complex formation that can promote microbe clustering. Together, our data suggest that ZG16B influences the compositional balance of the oral microbiome by capturing commensal microbes and regulating their growth using a mucin-assisted clearance mechanism.


Asunto(s)
Interacciones Microbiota-Huesped , Péptidos y Proteínas de Señalización Intercelular , Lectinas , Humanos , Pared Celular/metabolismo , Lectinas/metabolismo , Mucinas/metabolismo , Polisacáridos/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo
2.
Infect Immun ; : e0004824, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38814083

RESUMEN

Commensal bacteria are crucial in maintaining host physiological homeostasis, immune system development, and protection against pathogens. Despite their significance, the factors influencing persistent bacterial colonization and their impact on the host still need to be fully understood. Animal models have served as valuable tools to investigate these interactions, but most have limitations. The bacterial genus Neisseria, which includes both commensal and pathogenic species, has been studied from a pathogenicity to humans perspective but lacks models that study immune responses in the context of long-term persistence. Neisseria musculi, a recently described natural commensal of mice, offers a unique opportunity to study long-term host-commensal interactions. In this study, for the first time, we have used this model to study the transcriptional, phenotypic, and functional dynamics of immune cell signatures in the mucosal and systemic tissue of mice in response to N. musculi colonization. We found key genes and pathways vital for immune homeostasis in palate tissue, validated by flow cytometry of immune cells from the lung, blood, and spleen. This study offers a novel avenue for advancing our understanding of host-bacteria dynamics and may provide a platform for developing efficacious interventions against mucosal persistence by pathogenic Neisseria.

3.
Brief Bioinform ; 23(4)2022 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-35649389

RESUMEN

Rational vaccine design, especially vaccine antigen identification and optimization, is critical to successful and efficient vaccine development against various infectious diseases including coronavirus disease 2019 (COVID-19). In general, computational vaccine design includes three major stages: (i) identification and annotation of experimentally verified gold standard protective antigens through literature mining, (ii) rational vaccine design using reverse vaccinology (RV) and structural vaccinology (SV) and (iii) post-licensure vaccine success and adverse event surveillance and its usage for vaccine design. Protegen is a database of experimentally verified protective antigens, which can be used as gold standard data for rational vaccine design. RV predicts protective antigen targets primarily from genome sequence analysis. SV refines antigens through structural engineering. Recently, RV and SV approaches, with the support of various machine learning methods, have been applied to COVID-19 vaccine design. The analysis of post-licensure vaccine adverse event report data also provides valuable results in terms of vaccine safety and how vaccines should be used or paused. Ontology standardizes and incorporates heterogeneous data and knowledge in a human- and computer-interpretable manner, further supporting machine learning and vaccine design. Future directions on rational vaccine design are discussed.


Asunto(s)
COVID-19 , Vacunas , COVID-19/prevención & control , Vacunas contra la COVID-19 , Minería de Datos , Humanos , Aprendizaje Automático , Vacunas/química , Vacunas/genética , Vacunología/métodos
4.
J Transl Med ; 22(1): 269, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38475767

RESUMEN

BACKGROUND: Chemotherapy is a primary treatment for cancer, but its efficacy is often limited by cancer-associated bacteria (CAB) that impair tumor suppressor functions. Our previous research found that Mycoplasma fermentans DnaK, a chaperone protein, impairs p53 activities, which are essential for most anti-cancer chemotherapeutic responses. METHODS: To investigate the role of DnaK in chemotherapy, we treated cancer cell lines with M. fermentans DnaK and then with commonly used p53-dependent anti-cancer drugs (cisplatin and 5FU). We evaluated the cells' survival in the presence or absence of a DnaK-binding peptide (ARV-1502). We also validated our findings using primary tumor cells from a novel DnaK knock-in mouse model. To provide a broader context for the clinical significance of these findings, we investigated human primary cancer sequencing datasets from The Cancer Genome Atlas (TCGA). We identified F. nucleatum as a CAB carrying DnaK with an amino acid composition highly similar to M. fermentans DnaK. Therefore, we investigated the effect of F. nucleatum DnaK on the anti-cancer activity of cisplatin and 5FU. RESULTS: Our results show that both M. fermentans and F. nucleatum DnaKs reduce the effectiveness of cisplatin and 5FU. However, the use of ARV-1502 effectively restored the drugs' anti-cancer efficacy. CONCLUSIONS: Our findings offer a practical framework for designing and implementing novel personalized anti-cancer strategies by targeting specific bacterial DnaKs in patients with poor response to chemotherapy, underscoring the potential for microbiome-based personalized cancer therapies.


Asunto(s)
Antineoplásicos , Neoplasias , Animales , Ratones , Humanos , Cisplatino , Proteína p53 Supresora de Tumor , Fluorouracilo , Bacterias
5.
PLoS Pathog ; 17(3): e1009116, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33684178

RESUMEN

Streptococcus agalactiae (group B Streptococcus; GBS) remains a dominant cause of serious neonatal infections. One aspect of GBS that renders it particularly virulent during the perinatal period is its ability to invade the chorioamniotic membranes and persist in amniotic fluid, which is nutritionally deplete and rich in fetal immunologic factors such as antimicrobial peptides. We used next-generation sequencing of transposon-genome junctions (Tn-seq) to identify five GBS genes that promote survival in the presence of human amniotic fluid. We confirmed our Tn-seq findings using a novel CRISPR inhibition (CRISPRi) gene expression knockdown system. This analysis showed that one gene, which encodes a GntR-class transcription factor that we named MrvR, conferred a significant fitness benefit to GBS in amniotic fluid. We generated an isogenic targeted deletion of the mrvR gene, which had a growth defect in amniotic fluid relative to the wild type parent strain. The mrvR deletion strain also showed a significant biofilm defect in vitro. Subsequent in vivo studies showed that while the mutant was able to cause persistent murine vaginal colonization, pregnant mice colonized with the mrvR deletion strain did not develop preterm labor despite consistent GBS invasion of the uterus and the fetoplacental units. In contrast, pregnant mice colonized with wild type GBS consistently deliver prematurely. In a sepsis model the mrvR deletion strain showed significantly decreased lethality. In order to better understand the mechanism by which this newly identified transcription factor controls GBS virulence, we performed RNA-seq on wild type and mrvR deletion GBS strains, which revealed that the transcription factor affects expression of a wide range of genes across the GBS chromosome. Nucleotide biosynthesis and salvage pathways were highly represented among the set of differentially expressed genes, suggesting that MrvR may be involved in regulating nucleotide availability.


Asunto(s)
Líquido Amniótico/virología , Infecciones Estreptocócicas/virología , Streptococcus agalactiae/genética , Factores de Transcripción/metabolismo , Virulencia/genética , Animales , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica/genética , Humanos , Ratones , Fenotipo , Infecciones Estreptocócicas/inmunología
6.
Proc Natl Acad Sci U S A ; 117(52): 33507-33518, 2020 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-33318198

RESUMEN

Streptococcus pneumoniae (Spn) colonizes the nasopharynx and can cause pneumonia. From the lungs it spreads to the bloodstream and causes organ damage. We characterized the in vivo Spn and mouse transcriptomes within the nasopharynx, lungs, blood, heart, and kidneys using three Spn strains. We identified Spn genes highly expressed at all anatomical sites and in an organ-specific manner; highly expressed genes were shown to have vital roles with knockout mutants. The in vivo bacterial transcriptome during colonization/disease was distinct from previously reported in vitro transcriptomes. Distinct Spn and host gene-expression profiles were observed during colonization and disease states, revealing specific genes/operons whereby Spn adapts to and influences host sites in vivo. We identified and experimentally verified host-defense pathways induced by Spn during invasive disease, including proinflammatory responses and the interferon response. These results shed light on the pathogenesis of Spn and identify therapeutic targets.


Asunto(s)
Interacciones Huésped-Patógeno/genética , Infecciones Neumocócicas/genética , Infecciones Neumocócicas/microbiología , Streptococcus pneumoniae/fisiología , Transcriptoma/genética , Animales , Recuento de Colonia Microbiana , Femenino , Regulación Bacteriana de la Expresión Génica , Genes Bacterianos , Interferones/metabolismo , Masculino , Ratones Endogámicos C57BL , Mutación/genética , Filogenia , Análisis de Componente Principal , Transducción de Señal , Streptococcus pneumoniae/crecimiento & desarrollo
7.
Infect Immun ; 90(1): e0045121, 2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-34748366

RESUMEN

Streptococcus pneumoniae colonizes the nasopharynx asymptomatically but can also cause severe life-threatening disease. Importantly, stark differences in carbohydrate availability exist between the nasopharynx and invasive disease sites, such as the bloodstream, which most likely impact S. pneumoniae's behavior. Herein, using chemically defined medium (CDM) supplemented with physiological levels of carbohydrates, we examined how anatomical site-specific carbohydrate availability impacted S. pneumoniae physiology and virulence. S. pneumoniae cells grown in CDM modeling the nasopharynx (CDM-N) had reduced metabolic activity and a lower growth rate, demonstrated mixed acid fermentation with marked H2O2 production, and were in a carbon-catabolite repression (CCR)-derepressed state versus S. pneumoniae cells grown in CDM modeling blood (CDM-B). Using transcriptome sequencing (RNA-seq), we determined the transcriptome for the S. pneumoniae wild-type (WT) strain and its isogenic CCR-deficient mutant in CDM-N and CDM-B. Genes with altered expression as a result of changes in carbohydrate availability or catabolite control protein deficiency, respectively, were primarily involved in carbohydrate metabolism, but also encoded established virulence determinants, such as polysaccharide capsule and surface adhesins. We confirmed that anatomical site-specific carbohydrate availability directly influenced established S. pneumoniae virulence traits. S. pneumoniae cells grown in CDM-B formed shorter chains, produced more capsule, were less adhesive, and were more resistant to macrophage killing in an opsonophagocytosis assay. Moreover, growth of S. pneumoniae in CDM-N or CDM-B prior to the challenge of mice impacted relative fitness in a colonization model and invasive disease model, respectively. Thus, anatomical site-specific carbohydrate availability alters S. pneumoniae physiology and virulence, in turn promoting anatomical site-specific fitness.


Asunto(s)
Adaptación Fisiológica , Metabolismo de los Hidratos de Carbono , Infecciones Neumocócicas/microbiología , Streptococcus pneumoniae/fisiología , Animales , Adhesión Bacteriana , Femenino , Masculino , Ratones , Especificidad de Órganos , Virulencia , Factores de Virulencia
8.
Eur Respir J ; 58(2)2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33542050

RESUMEN

RATIONALE: Nontuberculous mycobacteria (NTM) are environmental mycobacteria that can cause a chronic progressive lung disease. Although epidemiological data indicate potential genetic predisposition, its nature remains unclear. OBJECTIVES: We aimed to identify host susceptibility loci for Mycobacterium avium complex (MAC), the most common NTM pathogen. METHODS: This genome-wide association study (GWAS) was conducted in Japanese patients with pulmonary MAC and healthy controls, followed by genotyping of candidate single-nucleotide polymorphisms (SNPs) in another Japanese cohort. For verification by Korean and European ancestry, we performed SNP genotyping. RESULTS: The GWAS discovery set included 475 pulmonary MAC cases and 417 controls. Both GWAS and replication analysis of 591 pulmonary MAC cases and 718 controls revealed the strongest association with chromosome 16p21, particularly with rs109592 (p=1.64×10-13, OR 0.54), which is in an intronic region of the calcineurin-like EF-hand protein 2 (CHP2). Expression quantitative trait loci analysis demonstrated an association with lung CHP2 expression. CHP2 was expressed in the lung tissue in pulmonary MAC disease. This SNP was associated with the nodular bronchiectasis subtype. Additionally, this SNP was significantly associated with the disease in patients of Korean (p=2.18×10-12, OR 0.54) and European (p=5.12×10-03, OR 0.63) ancestry. CONCLUSIONS: We identified rs109592 in the CHP2 locus as a susceptibility marker for pulmonary MAC disease.


Asunto(s)
Enfermedades Pulmonares , Infecciones por Mycobacterium no Tuberculosas , Infección por Mycobacterium avium-intracellulare , Estudio de Asociación del Genoma Completo , Humanos , Infecciones por Mycobacterium no Tuberculosas/genética , Complejo Mycobacterium avium , Micobacterias no Tuberculosas
9.
Proc Natl Acad Sci U S A ; 115(14): E3256-E3265, 2018 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-29555745

RESUMEN

Nontypeable Haemophilus influenzae (NTHi) exclusively colonize and infect humans and are critical to the pathogenesis of chronic obstructive pulmonary disease (COPD). In vitro and animal models do not accurately capture the complex environments encountered by NTHi during human infection. We conducted whole-genome sequencing of 269 longitudinally collected cleared and persistent NTHi from a 15-y prospective study of adults with COPD. Genome sequences were used to elucidate the phylogeny of NTHi isolates, identify genomic changes that occur with persistence in the human airways, and evaluate the effect of selective pressure on 12 candidate vaccine antigens. Strains persisted in individuals with COPD for as long as 1,422 d. Slipped-strand mispairing, mediated by changes in simple sequence repeats in multiple genes during persistence, regulates expression of critical virulence functions, including adherence, nutrient uptake, and modification of surface molecules, and is a major mechanism for survival in the hostile environment of the human airways. A subset of strains underwent a large 400-kb inversion during persistence. NTHi does not undergo significant gene gain or loss during persistence, in contrast to other persistent respiratory tract pathogens. Amino acid sequence changes occurred in 8 of 12 candidate vaccine antigens during persistence, an observation with important implications for vaccine development. These results indicate that NTHi alters its genome during persistence by regulation of critical virulence functions primarily by slipped-strand mispairing, advancing our understanding of how a bacterial pathogen that plays a critical role in COPD adapts to survival in the human respiratory tract.


Asunto(s)
Evolución Molecular , Genoma Viral , Infecciones por Haemophilus/epidemiología , Haemophilus influenzae/genética , Enfermedad Pulmonar Obstructiva Crónica/complicaciones , Vacunas Virales/genética , Virulencia/genética , Adulto , Secuencia de Aminoácidos , Infecciones por Haemophilus/virología , Haemophilus influenzae/aislamiento & purificación , Humanos , Mutación , Filogenia , Estudios Prospectivos , Sistema Respiratorio/microbiología , Vacunas Virales/inmunología
10.
Proc Natl Acad Sci U S A ; 115(51): E12005-E12014, 2018 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-30509983

RESUMEN

We isolated a strain of human mycoplasma that promotes lymphomagenesis in SCID mice, pointing to a p53-dependent mechanism similar to lymphomagenesis in uninfected p53-/- SCID mice. Additionally, mycoplasma infection in vitro reduces p53 activity. Immunoprecipitation of p53 in mycoplasma-infected cells identified several mycoplasma proteins, including DnaK, a member of the Hsp70 chaperon family. We focused on DnaK because of its ability to interact with proteins. We demonstrate that mycoplasma DnaK interacts with and reduces the activities of human proteins involved in critical cellular pathways, including DNA-PK and PARP1, which are required for efficient DNA repair, and binds to USP10 (a key p53 regulator), impairing p53-dependent anticancer functions. This also reduced the efficacy of anticancer drugs that depend on p53 to exert their effect. mycoplasma was detected early in the infected mice, but only low copy numbers of mycoplasma DnaK DNA sequences were found in some primary and secondary tumors, pointing toward a hit-and-run/hide mechanism of transformation. Uninfected bystander cells took up exogenous DnaK, suggesting a possible paracrine function in promoting malignant transformation, over and above cells infected with the mycoplasma. Phylogenetic amino acid analysis shows that other bacteria associated with human cancers have similar DnaKs, consistent with a common mechanism of cellular transformation mediated through disruption of DNA-repair mechanisms, as well as p53 dysregulation, that also results in cancer-drug resistance. This suggests that the oncogenic properties of certain bacteria are DnaK-mediated.


Asunto(s)
Adenosina Trifosfatasas/genética , Proteínas Bacterianas/genética , Carcinogénesis/genética , Transformación Celular Neoplásica/genética , Chaperonas Moleculares/genética , Mycoplasma/genética , Adenosina Trifosfatasas/clasificación , Animales , Antineoplásicos/uso terapéutico , Proteínas Bacterianas/clasificación , Transformación Celular Neoplásica/efectos de los fármacos , Transformación Celular Neoplásica/metabolismo , Reparación del ADN , ADN Bacteriano/genética , Proteína Quinasa Activada por ADN/metabolismo , Modelos Animales de Enfermedad , Genes Bacterianos/genética , Células HCT116 , Proteínas HSP70 de Choque Térmico/metabolismo , Humanos , Linfoma/genética , Linfoma/microbiología , Linfoma/patología , Ratones , Ratones SCID , Chaperonas Moleculares/clasificación , Mycoplasma/patogenicidad , Infecciones por Mycoplasma/microbiología , Mycoplasma fermentans/genética , Mycoplasma fermentans/patogenicidad , Oncogenes , Filogenia , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Análisis de Secuencia , Análisis de Secuencia de Proteína , Proteína p53 Supresora de Tumor/metabolismo , Ubiquitina Tiolesterasa/metabolismo
11.
Int J Mol Sci ; 22(8)2021 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-33918708

RESUMEN

Several species of mycoplasmas, including Mycoplasma fermentans, are associated with certain human cancers. We previously isolated and characterized in our laboratory a strain of human mycoplasma M. fermentans subtype incognitus (MF-I1) able to induce lymphoma in a Severe Combined Immuno-Deficient (SCID) mouse model, and we demonstrated that its chaperone protein, DnaK, binds and reduces functions of human poly-ADP ribose polymerase-1 (PARP1) and ubiquitin carboxyl-terminal hydrolase protein-10 (USP10), which are required for efficient DNA repair and proper p53 activities, respectively. We also showed that other bacteria associated with human cancers (including Mycoplasmapneumoniae, Helicobacterpylori, Fusobacteriumnucleatum, Chlamydiathrachomatis, and Chlamydia pneumoniae) have closely related DnaK proteins, indicating a potential common mechanism of cellular transformation. Here, we quantify dnaK mRNA copy number by RT-qPCR analysis in different cellular compartments following intracellular MF-I1 infection of HCT116 human colon carcinoma cells. DnaK protein expression in infected cells was also detected and quantified by Western blot. The amount of viable intracellular mycoplasma reached a steady state after an initial phase of growth and was mostly localized in the cytoplasm of the invaded cells, while we detected a logarithmically increased number of viable extracellular bacteria. Our data indicate that, after invasion, MF-I1 is able to establish a chronic intracellular infection. Extracellular replication was more efficient while MF-I1 cultured in cell-free axenic medium showed a markedly reduced growth rate. We also identified modifications of important regulatory regions and heterogeneous lengths of dnaK mRNA transcripts isolated from intracellular and extracellular MF-I1. Both characteristics were less evident in dnaK mRNA transcripts isolated from MF-I1 grown in cell-free axenic media. Taken together, our data indicate that MF-I1, after establishing a chronic infection in eukaryotic cells, accumulates different forms of dnaK with efficient RNA turnover.


Asunto(s)
Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Proteínas HSP70 de Choque Térmico/genética , Mycoplasma fermentans/genética , Células Cultivadas , Células HCT116 , Humanos , Mutación , Infecciones por Mycoplasma/microbiología
12.
J Infect Dis ; 219(9): 1448-1455, 2019 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-30496439

RESUMEN

BACKGROUND: Persistence of bacterial pathogens in the airways has profound consequences on the course and pathogenesis of chronic obstructive pulmonary disease (COPD). Patients with COPD continuously acquire and clear strains of Moraxella catarrhalis, a major pathogen in COPD. Some strains are cleared quickly and some persist for months to years. The mechanism of the variability in duration of persistence is unknown. METHODS: Guided by genome sequences of selected strains, we studied the expression of Hag/MID, hag/mid gene sequences, adherence to human cells, and autoaggregation in longitudinally collected strains of M. catarrhalis from adults with COPD. RESULTS: Twenty-eight of 30 cleared strains of M. catarrhalis expressed Hag/MID whereas 17 of 30 persistent strains expressed Hag/MID upon acquisition by patients. All persistent strains ceased expression of Hag/MID during persistence. Expression of Hag/MID in human airways was regulated by slipped-strand mispairing. Virulence-associated phenotypes (adherence to human respiratory epithelial cells and autoaggregation) paralleled Hag/MID expression in airway isolates. CONCLUSIONS: Most strains of M. catarrhalis express Hag/MID upon acquisition by adults with COPD and all persistent strains shut off expression during persistence. These observations suggest that Hag/MID is important for initial colonization by M. catarrhalis and that cessation of expression facilitates persistence in COPD airways.


Asunto(s)
Adhesinas Bacterianas/genética , Moraxella catarrhalis/genética , Moraxella catarrhalis/patogenicidad , Infecciones por Moraxellaceae/microbiología , Enfermedad Pulmonar Obstructiva Crónica/microbiología , Sistema Respiratorio/microbiología , Adulto , Adhesión Bacteriana , Expresión Génica , Humanos , Moraxella catarrhalis/fisiología , Fenotipo , Factores de Virulencia/genética
13.
BMC Genomics ; 20(1): 981, 2019 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-31842745

RESUMEN

BACKGROUND: Reverse vaccinology accelerates the discovery of potential vaccine candidates (PVCs) prior to experimental validation. Current programs typically use one bacterial proteome to identify PVCs through a filtering architecture using feature prediction programs or a machine learning approach. Filtering approaches may eliminate potential antigens based on limitations in the accuracy of prediction tools used. Machine learning approaches are heavily dependent on the selection of training datasets with experimentally validated antigens (positive control) and non-protective-antigens (negative control). The use of one or few bacterial proteomes does not assess PVC conservation among strains, an important feature of vaccine antigens. RESULTS: We present ReVac, which implements both a panoply of feature prediction programs without filtering out proteins, and scoring of candidates based on predictions made on curated positive and negative control PVCs datasets. ReVac surveys several genomes assessing protein conservation, as well as DNA and protein repeats, which may result in variable expression of PVCs. ReVac's orthologous clustering of conserved genes, identifies core and dispensable genome components. This is useful for determining the degree of conservation of PVCs among the population of isolates for a given pathogen. Potential vaccine candidates are then prioritized based on conservation and overall feature-based scoring. We present the application of ReVac, applied to 69 Moraxella catarrhalis and 270 non-typeable Haemophilus influenzae genomes, prioritizing 64 and 29 proteins as PVCs, respectively. CONCLUSION: ReVac's use of a scoring scheme ranks PVCs for subsequent experimental testing. It employs a redundancy-based approach in its predictions of features using several prediction tools. The protein's features are collated, and each protein is ranked based on the scoring scheme. Multi-genome analyses performed in ReVac allow for a comprehensive overview of PVCs from a pan-genome perspective, as an essential pre-requisite for any bacterial subunit vaccine design. ReVac prioritized PVCs of two human respiratory pathogens, identifying both novel and previously validated PVCs.


Asunto(s)
Bacterias/genética , Proteínas Bacterianas/inmunología , Biología Computacional/métodos , Vacunología/métodos , Bacterias/inmunología , Proteínas Bacterianas/genética , Vacunas Bacterianas/genética , Vacunas Bacterianas/inmunología , Humanos , Aprendizaje Automático , Programas Informáticos , Vacunas de Subunidad/genética , Vacunas de Subunidad/inmunología
14.
PLoS Pathog ; 13(8): e1006584, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28832676

RESUMEN

The Group A Streptococcus remains a significant human pathogen causing a wide array of disease ranging from self-limiting to life-threatening invasive infections. Epithelium (skin or throat) colonization with progression to the subepithelial tissues is the common step in all GAS infections. Here, we used transposon-sequencing (Tn-seq) to define the GAS 5448 genetic requirements for in vivo fitness in subepithelial tissue. A near-saturation transposon library of the M1T1 GAS 5448 strain was injected subcutaneously into mice, producing suppurative inflammation at 24 h that progressed to prominent abscesses with tissue necrosis at 48 h. The library composition was monitored en masse by Tn-seq and ratios of mutant abundance comparing the output (12, 24 and 48 h) versus input (T0) mutant pools were calculated for each gene. We identified a total of 273 subcutaneous fitness (scf) genes with 147 genes (55 of unknown function) critical for the M1T1 GAS 5448 fitness in vivo; and 126 genes (53 of unknown function) potentially linked to in vivo fitness advantage. Selected scf genes were validated in competitive subcutaneous infection with parental 5448. Two uncharacterized genes, scfA and scfB, encoding putative membrane-associated proteins and conserved among Gram-positive pathogens, were further characterized. Defined scfAB mutants in GAS were outcompeted by wild type 5448 in vivo, attenuated for lesion formation in the soft tissue infection model and dissemination to the bloodstream. We hypothesize that scfAB play an integral role in enhancing adaptation and fitness of GAS during localized skin infection, and potentially in propagation to other deeper host environments.


Asunto(s)
Genes Bacterianos/genética , Infecciones de los Tejidos Blandos/microbiología , Infecciones Estreptocócicas/microbiología , Streptococcus pyogenes/genética , Virulencia/genética , Animales , Modelos Animales de Enfermedad , Aptitud Genética/genética , Ratones , Reacción en Cadena de la Polimerasa
15.
PLoS Pathog ; 13(8): e1006582, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28841717

RESUMEN

For over 130 years, invasive pneumococcal disease has been associated with the presence of extracellular planktonic pneumococci, i.e. diplococci or short chains in affected tissues. Herein, we show that Streptococcus pneumoniae that invade the myocardium instead replicate within cellular vesicles and transition into non-purulent biofilms. Pneumococci within mature cardiac microlesions exhibited salient biofilm features including intrinsic resistance to antibiotic killing and the presence of an extracellular matrix. Dual RNA-seq and subsequent principal component analyses of heart- and blood-isolated pneumococci confirmed the biofilm phenotype in vivo and revealed stark anatomical site-specific differences in virulence gene expression; the latter having major implications on future vaccine antigen selection. Our RNA-seq approach also identified three genomic islands as exclusively expressed in vivo. Deletion of one such island, Region of Diversity 12, resulted in a biofilm-deficient and highly inflammogenic phenotype within the heart; indicating a possible link between the biofilm phenotype and a dampened host-response. We subsequently determined that biofilm pneumococci released greater amounts of the toxin pneumolysin than did planktonic or RD12 deficient pneumococci. This allowed heart-invaded wildtype pneumococci to kill resident cardiac macrophages and subsequently subvert cytokine/chemokine production and neutrophil infiltration into the myocardium. This is the first report for pneumococcal biofilm formation in an invasive disease setting. We show that biofilm pneumococci actively suppress the host response through pneumolysin-mediated immune cell killing. As such, our findings contradict the emerging notion that biofilm pneumococci are passively immunoquiescent.


Asunto(s)
Biopelículas , Macrófagos/inmunología , Miocarditis/inmunología , Miocarditis/microbiología , Infecciones Neumocócicas/inmunología , Transcriptoma , Animales , Western Blotting , Modelos Animales de Enfermedad , Femenino , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Perfilación de la Expresión Génica , Ratones , Ratones Endogámicos BALB C , Microscopía Electrónica de Transmisión , Infecciones Neumocócicas/genética , Análisis de Componente Principal , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/inmunología , Virulencia/genética , Virulencia/inmunología
16.
Infect Immun ; 86(8)2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29760213

RESUMEN

Nontypeable Haemophilus influenzae (NTHi) is an exclusively human pathobiont that plays a critical role in the course and pathogenesis of chronic obstructive pulmonary disease (COPD). NTHi causes acute exacerbations of COPD and also causes persistent infection of the lower airways. NTHi expresses four IgA protease variants (A1, A2, B1, and B2) that play different roles in virulence. Expression of IgA proteases varies among NTHi strains, but little is known about the frequency and mechanisms by which NTHi modulates IgA protease expression during infection in COPD. To assess expression of IgA protease during natural infection in COPD, we studied IgA protease expression by 101 persistent strains (median duration of persistence, 161 days; range, 2 to 1,422 days) collected longitudinally from patients enrolled in a 20-year study of COPD upon initial acquisition and immediately before clearance from the host. Upon acquisition, 89 (88%) expressed IgA protease. A total of 16 of 101 (16%) strains of NTHi altered expression of IgA protease during persistence. Indels and slipped-strand mispairing of mononucleotide repeats conferred changes in expression of igaA1, igaA2, and igaB1 Strains with igaB2 underwent frequent changes in expression of IgA protease B2 during persistence, mediated by slipped-strand mispairing of a 7-nucleotide repeat, TCAAAAT, within the open reading frame of igaB2 We conclude that changes in iga gene sequences result in changes in expression of IgA proteases by NTHi during persistent infection in the respiratory tract of patients with COPD.


Asunto(s)
Expresión Génica , Infecciones por Haemophilus/microbiología , Haemophilus influenzae/enzimología , Mutación , Enfermedad Pulmonar Obstructiva Crónica/microbiología , Serina Endopeptidasas/biosíntesis , Infecciones por Haemophilus/complicaciones , Haemophilus influenzae/genética , Haemophilus influenzae/aislamiento & purificación , Humanos , Estudios Longitudinales , New York , Estudios Prospectivos , Enfermedad Pulmonar Obstructiva Crónica/patología , Serina Endopeptidasas/genética
17.
Infect Immun ; 86(1)2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29109175

RESUMEN

Streptococcus agalactiae (group B Streptococcus [GBS]) causes serious infections in neonates. We previously reported a transposon sequencing (Tn-seq) system for performing genomewide assessment of gene fitness in GBS. In order to identify molecular mechanisms required for GBS to transition from a mucosal commensal lifestyle to bloodstream invasion, we performed Tn-seq on GBS strain A909 with human whole blood. Our analysis identified 16 genes conditionally essential for GBS survival in blood, of which 75% were members of the capsular polysaccharide (cps) operon. Among the non-cps genes identified as conditionally essential was relA, which encodes an enzyme whose activity is central to the bacterial stringent response-a conserved adaptation to environmental stress. We used blood coincubation studies of targeted knockout strains to confirm the expected growth defects of GBS deficient in capsule or stringent response activation. Unexpectedly, we found that the relA knockout strains demonstrated decreased expression of ß-hemolysin/cytolysin, an important cytotoxin implicated in facilitating GBS invasion. Furthermore, chemical activation of the stringent response with serine hydroxamate increased ß-hemolysin/cytolysin expression. To establish a mechanism by which the stringent response leads to increased cytotoxicity, we performed transcriptome sequencing (RNA-seq) on two GBS strains grown under stringent response or control conditions. This revealed a conserved decrease in the expression of genes in the arginine deiminase pathway during stringent response activation. Through coincubation with supplemental arginine and the arginine antagonist canavanine, we show that arginine availability is a determinant of GBS cytotoxicity and that the pathway between stringent response activation and increased virulence is arginine dependent.


Asunto(s)
Infecciones Estreptocócicas/microbiología , Streptococcus agalactiae/patogenicidad , Virulencia/genética , Arginina/genética , Proteínas Bacterianas/genética , Comunicación Celular/genética , Regulación Bacteriana de la Expresión Génica/genética , Genes Bacterianos/genética , Aptitud Genética/genética , Proteínas Hemolisinas/genética , Humanos , Hidrolasas/genética , Operón/genética , Perforina/genética , Streptococcus agalactiae/genética , Transcriptoma/genética
18.
Am J Respir Crit Care Med ; 196(12): 1599-1604, 2017 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-28777004

RESUMEN

RATIONALE: Pulmonary nontuberculous mycobacterial disease (PNTM) often affects white postmenopausal women, with a tall and lean body habitus and higher rates of scoliosis, pectus excavatum, mitral valve prolapse, and mutations in the CFTR gene. These clinical features and the familial clustering of the disease suggest an underlying genetic mechanism. OBJECTIVES: To map the genes associated with PNTM, whole-exome sequencing was conducted in 12 PNTM families and 57 sporadic cases recruited at the National Institutes of Health Clinical Center during 2001-2013. METHODS: We performed a variant-level and a gene-level parametric linkage analysis on nine PNTM families (16 affected and 20 unaffected) as well as a gene-level association analysis on nine PNTM families and 55 sporadic cases. MEASUREMENTS AND MAIN RESULTS: The genome-wide variant-level linkage analysis using 4,328 independent common variants identified a 20-cM region on chromosome 6q12-6q16 (heterogeneity logarithm of odds score = 3.9), under a recessive disease model with 100% penetrance and a risk allele frequency of 5%. All genes on chromosome 6 were then tested in the gene-level linkage analysis, using the collapsed haplotype pattern method. The TTK protein kinase gene (TTK) on chromosome 6q14.1 was the most significant (heterogeneity logarithm of odds score = 3.38). In addition, the genes MAP2K4, RCOR3, KRT83, IFNLR1, and SLC29A1 were associated with PNTM in our gene-level association analysis. CONCLUSIONS: The TTK gene encodes a protein kinase that is essential for mitotic checkpoints and the DNA damage response. TTK and other genetic loci identified in our study may contribute to the increased susceptibility to NTM infection and its progression to pulmonary disease.


Asunto(s)
Proteínas de Ciclo Celular/genética , Secuenciación del Exoma/métodos , Infecciones por Mycobacterium no Tuberculosas/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas/genética , Humanos
19.
BMC Genomics ; 18(1): 332, 2017 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-28449639

RESUMEN

BACKGROUND: The benefit of increasing genomic sequence data to the scientific community depends on easy-to-use, scalable bioinformatics support. CloVR-Comparative combines commonly used bioinformatics tools into an intuitive, automated, and cloud-enabled analysis pipeline for comparative microbial genomics. RESULTS: CloVR-Comparative runs on annotated complete or draft genome sequences that are uploaded by the user or selected via a taxonomic tree-based user interface and downloaded from NCBI. CloVR-Comparative runs reference-free multiple whole-genome alignments to determine unique, shared and core coding sequences (CDSs) and single nucleotide polymorphisms (SNPs). Output includes short summary reports and detailed text-based results files, graphical visualizations (phylogenetic trees, circular figures), and a database file linked to the Sybil comparative genome browser. Data up- and download, pipeline configuration and monitoring, and access to Sybil are managed through CloVR-Comparative web interface. CloVR-Comparative and Sybil are distributed as part of the CloVR virtual appliance, which runs on local computers or the Amazon EC2 cloud. Representative datasets (e.g. 40 draft and complete Escherichia coli genomes) are processed in <36 h on a local desktop or at a cost of <$20 on EC2. CONCLUSIONS: CloVR-Comparative allows anybody with Internet access to run comparative genomics projects, while eliminating the need for on-site computational resources and expertise.


Asunto(s)
Nube Computacional , Genómica/métodos , Programas Informáticos , Automatización , Genoma Microbiano/genética , Alineación de Secuencia , Análisis de Secuencia
20.
Infect Immun ; 84(10): 2922-32, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27481242

RESUMEN

Streptococcus pneumoniae is an opportunistic pathogen that colonizes the nasopharynx. Herein we show that carbon availability is distinct between the nasopharynx and bloodstream of adult humans: glucose is absent from the nasopharynx, whereas galactose is abundant. We demonstrate that pneumococcal neuraminidase A (NanA), which cleaves terminal sialic acid residues from host glycoproteins, exposed galactose on the surface of septal epithelial cells, thereby increasing its availability during colonization. We observed that S. pneumoniae mutants deficient in NanA and ß-galactosidase A (BgaA) failed to form biofilms in vivo despite normal biofilm-forming abilities in vitro Subsequently, we observed that glucose, sucrose, and fructose were inhibitory for biofilm formation, whereas galactose, lactose, and low concentrations of sialic acid were permissive. Together these findings suggested that the genes involved in biofilm formation were under some form of carbon catabolite repression (CCR), a regulatory network in which genes involved in the uptake and metabolism of less-preferred sugars are silenced during growth with preferred sugars. Supporting this notion, we observed that a mutant deficient in pyruvate oxidase, which converts pyruvate to acetyl-phosphate under non-CCR-inducing growth conditions, was unable to form biofilms. Subsequent comparative transcriptome sequencing (RNA-seq) analyses of planktonic and biofilm-grown pneumococci showed that metabolic pathways involving the conversion of pyruvate to acetyl-phosphate and subsequently leading to fatty acid biosynthesis were consistently upregulated during diverse biofilm growth conditions. We conclude that carbon availability in the nasopharynx impacts pneumococcal biofilm formation in vivo Additionally, biofilm formation involves metabolic pathways not previously appreciated to play an important role.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Metabolismo de los Hidratos de Carbono/fisiología , Carbohidratos/farmacología , Galactosa/farmacocinética , Neuraminidasa/fisiología , Infecciones Neumocócicas/microbiología , Streptococcus pneumoniae/fisiología , Análisis de Varianza , Animales , Biopelículas/efectos de los fármacos , Modelos Animales de Enfermedad , Células Epiteliales/metabolismo , Femenino , Galactosa/metabolismo , Galactosa/farmacología , Humanos , Ratones , Ratones Endogámicos BALB C , Ácido N-Acetilneuramínico/metabolismo , Líquido del Lavado Nasal/química , Tabique Nasal/metabolismo , Tabique Nasal/microbiología , Nasofaringe/metabolismo , Nasofaringe/microbiología , Neuraminidasa/metabolismo , Infecciones Neumocócicas/metabolismo , Streptococcus pneumoniae/efectos de los fármacos , beta-Galactosidasa/deficiencia , beta-Galactosidasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA