Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
J Am Chem Soc ; 146(9): 6025-6036, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38408197

RESUMEN

The formation of isolable monatomic BiI complexes and BiII radical species is challenging due to the pronounced reducing nature of metallic bismuth. Here, we report a convenient strategy to tame BiI and BiII atoms by taking advantage of the redox noninnocent character of a new chelating bis(germylene) ligand. The remarkably stable novel BiI cation complex 4, supported by the new bis(iminophosphonamido-germylene)xanthene ligand [(P)GeII(Xant)GeII(P)] 1, [(P)GeII(Xant)GeII(P) = Ph2P(NtBu)2GeII(Xant)GeII(NtBu)2PPh2, Xant = 9,9-dimethyl-xanthene-4,5-diyl], was synthesized by a two-electron reduction of the cationic BiIIII2 precursor complex 3 with cobaltocene (Cp2Co) in a molar ratio of 1:2. Notably, owing to the redox noninnocent character of the germylene moieties, the positive charge of BiI cation 4 migrates to one of the Ge atoms in the bis(germylene) ligand, giving rise to a germylium(germylene) BiI complex as suggested by DFT calculations and X-ray photoelectron spectroscopy (XPS). Likewise, migration of the positive charge of the BiIIII2 cation of 3 results in a bis(germylium)BiIIII2 complex. The delocalization of the positive charge in the ligand engenders a much higher stability of the BiI cation 4 in comparison to an isoelectronic two-coordinate Pb0 analogue (plumbylone; decomposition below -30 °C). Interestingly, 4[BArF] undergoes a reversible single-electron transfer (SET) reaction (oxidation) to afford the isolable BiII radical complex 5 in 5[BArF]2. According to electron paramagnetic resonance (EPR) spectroscopy, the unpaired electron predominantly resides at the BiII atom. Extending the redox reactivity of 4[OTf] employing AgOTf and MeOTf affords BiIII(OTf)2 complex 7 and BiIIIMe complex 8, respectively, demonstrating the high nucleophilic character of BiI cation 4.

2.
Angew Chem Int Ed Engl ; 62(19): e202300254, 2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-36855012

RESUMEN

The first consistent series of mononuclear 17-electron complexes of three Group 7 elements has been isolated in crystalline form and studied by X-ray diffraction and spectroscopic methods. The paramagnetic compounds have a composition of [M0 (CO)(CNp-F-ArDArF2 )4 ] (M=Mn, Tc, Re; ArDArF2 =2,6-(3,5-(CF3 )2 C6 H3 )2 C6 H2 F) and are stabilized by four sterically encumbering isocyanides, which prevent the metalloradicals from dimerization. They have a square pyramidal structure with the carbonyl ligands as apexes. The frozen-solution EPR spectra of the rhenium and technetium compounds are clearly anisotropic with large 99 Tc and 185,187 Re hyperfine interactions for one component. High-field EPR (Q band and W band) has been applied for the elucidation of the EPR parameters of the manganese(0) complex.

3.
J Am Chem Soc ; 144(37): 17022-17032, 2022 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-36084022

RESUMEN

NAD+-reducing [NiFe] hydrogenases are valuable biocatalysts for H2-based energy conversion and the regeneration of nucleotide cofactors. While most hydrogenases are sensitive toward O2 and elevated temperatures, the soluble NAD+-reducing [NiFe] hydrogenase from Hydrogenophilus thermoluteolus (HtSH) is O2-tolerant and thermostable. Thus, it represents a promising candidate for biotechnological applications. Here, we have investigated the catalytic activity and active-site structure of native HtSH and variants in which a glutamate residue in the active-site cavity was replaced by glutamine, alanine, and aspartate. Our biochemical, spectroscopic, and theoretical studies reveal that at least two active-site states of oxidized HtSH feature an unusual architecture in which the glutamate acts as a terminal ligand of the active-site nickel. This observation demonstrates that crystallographically observed glutamate coordination represents a native feature of the enzyme. One of these states is diamagnetic and characterized by a very high stretching frequency of an iron-bound active-site CO ligand. Supported by density-functional-theory calculations, we identify this state as a high-valent species with a biologically unprecedented formal Ni(IV) ground state. Detailed insights into its structure and dynamics were obtained by ultrafast and two-dimensional infrared spectroscopy, demonstrating that it represents a conformationally strained state with unusual bond properties. Our data further show that this state is selectively and reversibly formed under oxic conditions, especially upon rapid exposure to high O2 levels. We conclude that the kinetically controlled formation of this six-coordinate high-valent state represents a specific and precisely orchestrated stereoelectronic response toward O2 that could protect the enzyme from oxidative damage.


Asunto(s)
Hidrogenasas , Alanina/metabolismo , Ácido Aspártico/metabolismo , Dominio Catalítico , Ácido Glutámico/metabolismo , Glutamina/metabolismo , Hidrogenasas/química , Hydrogenophilaceae , Hierro/química , Ligandos , NAD/metabolismo , Níquel/química , Oxidación-Reducción , Oxígeno/química
4.
Angew Chem Int Ed Engl ; 61(18): e202117000, 2022 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-35133707

RESUMEN

Ni,Fe-containing carbon monoxide dehydrogenases (CODHs) catalyze the reversible reduction of CO2 to CO. Several anaerobic microorganisms encode multiple CODHs in their genome, of which some, despite being annotated as CODHs, lack a cysteine of the canonical binding motif for the active site Ni,Fe-cluster. Here, we report on the structure and reactivity of such a deviant enzyme, termed CooS-VCh . Its structure reveals the typical CODH scaffold, but contains an iron-sulfur-oxo hybrid-cluster. Although closely related to true CODHs, CooS-VCh catalyzes neither CO oxidation, nor CO2 reduction. The active site of CooS-VCh undergoes a redox-dependent restructuring between a reduced [4Fe-3S]-cluster and an oxidized [4Fe-2S-S*-2O-2(H2 O)]-cluster. Hydroxylamine, a slow-turnover substrate of CooS-VCh , oxidizes the hybrid-cluster in two structurally distinct steps. Overall, minor changes in CODHs are sufficient to accommodate a Fe/S/O-cluster in place of the Ni,Fe-heterocubane-cluster of CODHs.


Asunto(s)
Dióxido de Carbono , Proteínas Hierro-Azufre , Aldehído Oxidorreductasas/química , Dióxido de Carbono/metabolismo , Monóxido de Carbono/química , Proteínas Hierro-Azufre/metabolismo , Complejos Multienzimáticos , Níquel/química , Oxidación-Reducción
5.
Angew Chem Int Ed Engl ; 61(46): e202211433, 2022 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-36161982

RESUMEN

We demonstrate that several visible-light-mediated carbon-heteroatom cross-coupling reactions can be carried out using a photoactive NiII precatalyst that forms in situ from a nickel salt and a bipyridine ligand decorated with two carbazole groups (Ni(Czbpy)Cl2 ). The activation of this precatalyst towards cross-coupling reactions follows a hitherto undisclosed mechanism that is different from previously reported light-responsive nickel complexes that undergo metal-to-ligand charge transfer. Theoretical and spectroscopic investigations revealed that irradiation of Ni(Czbpy)Cl2 with visible light causes an initial intraligand charge transfer event that triggers productive catalysis. Ligand polymerization affords a porous, recyclable organic polymer for heterogeneous nickel catalysis of cross-coupling reactions. The heterogeneous catalyst shows stable performance in a packed-bed flow reactor during a week of continuous operation.

6.
Angew Chem Int Ed Engl ; 60(27): 14938-14944, 2021 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-33544452

RESUMEN

Simultaneous visualization and concentration quantification of molecules in biological tissue is an important though challenging goal. The advantages of fluorescence lifetime imaging microscopy (FLIM) for visualization, and electron paramagnetic resonance (EPR) spectroscopy for quantification are complementary. Their combination in a multiplexed approach promises a successful but ambitious strategy because of spin label-mediated fluorescence quenching. Here, we solved this problem and present the molecular design of a dual label (DL) compound comprising a highly fluorescent dye together with an EPR spin probe, which also renders the fluorescence lifetime to be concentration sensitive. The DL can easily be coupled to the biomolecule of choice, enabling in vivo and in vitro applications. This novel approach paves the way for elegant studies ranging from fundamental biological investigations to preclinical drug research, as shown in proof-of-principle penetration experiments in human skin ex vivo.


Asunto(s)
Fluorescencia , Colorantes Fluorescentes/química , Rodaminas/química , Espectroscopía de Resonancia por Spin del Electrón , Humanos , Microscopía Fluorescente , Estructura Molecular , Piel/química
7.
J Am Chem Soc ; 142(12): 5493-5497, 2020 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-32125830

RESUMEN

[FeFe] hydrogenases are highly efficient catalysts for reversible dihydrogen evolution. H2 turnover involves different catalytic intermediates including a recently characterized hydride state of the active site (H-cluster). Applying cryogenic infrared and electron paramagnetic resonance spectroscopy to an [FeFe] model hydrogenase from Chlamydomonas reinhardtii (CrHydA1), we have discovered two new hydride intermediates and spectroscopic evidence for a bridging CO ligand in two reduced H-cluster states. Our study provides novel insights into these key intermediates, their relevance for the catalytic cycle of [FeFe] hydrogenase, and novel strategies for exploring these aspects in detail.

8.
Angew Chem Int Ed Engl ; 59(29): 11937-11942, 2020 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-32219972

RESUMEN

Alkaptonuria (AKU) is a rare disease characterized by high levels of homogentisic acid (HGA); patients suffer from tissue ochronosis: dark brown pigmentation, especially of joint cartilage, leading to severe early osteoarthropathy. No molecular mechanism links elevated HGA to ochronosis; the pigment's chemical identity is still not known, nor how it induces joint cartilage degradation. Here we give key insight on HGA-derived pigment composition and collagen disruption in AKU cartilage. Synthetic pigment and pigmented human cartilage tissue both showed hydroquinone-resembling NMR signals. EPR spectroscopy showed that the synthetic pigment contains radicals. Moreover, we observed intrastrand disruption of collagen triple helix in pigmented AKU human cartilage, and in cartilage from patients with osteoarthritis. We propose that collagen degradation can occur via transient glycyl radicals, the formation of which is enhanced in AKU due to the redox environment generated by pigmentation.


Asunto(s)
Alcaptonuria/metabolismo , Cartílago Articular/metabolismo , Osteoartritis/metabolismo , Pigmentación , Espectroscopía de Resonancia por Spin del Electrón , Ácido Homogentísico/metabolismo , Humanos , Espectroscopía de Resonancia Magnética , Oxidación-Reducción , Pigmentos Biológicos/química
9.
Biochemistry ; 58(17): 2228-2242, 2019 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-30945846

RESUMEN

The oxidoreductase YdhV in Escherichia coli has been predicted to belong to the family of molybdenum/tungsten cofactor (Moco/Wco)-containing enzymes. In this study, we characterized the YdhV protein in detail, which shares amino acid sequence homology with a tungsten-containing benzoyl-CoA reductase binding the bis-W-MPT (for metal-binding pterin) cofactor. The cofactor was identified to be of a bis-Mo-MPT type with no guanine nucleotides present, which represents a form of Moco that has not been found previously in any molybdoenzyme. Our studies showed that YdhV has a preference for bis-Mo-MPT over bis-W-MPT to be inserted into the enzyme. In-depth characterization of YdhV by X-ray absorption and electron paramagnetic resonance spectroscopies revealed that the bis-Mo-MPT cofactor in YdhV is redox active. The bis-Mo-MPT and bis-W-MPT cofactors include metal centers that bind the four sulfurs from the two dithiolene groups in addition to a cysteine and likely a sulfido ligand. The unexpected presence of a bis-Mo-MPT cofactor opens an additional route for cofactor biosynthesis in E. coli and expands the canon of the structurally highly versatile molybdenum and tungsten cofactors.


Asunto(s)
Coenzimas/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimología , Ferredoxinas/química , Metaloproteínas/química , Molibdeno/química , Compuestos Organometálicos/química , Oxidorreductasas/química , Pteridinas/química , Pterinas/química , Coenzimas/genética , Coenzimas/metabolismo , Espectroscopía de Resonancia por Spin del Electrón , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Ferredoxinas/genética , Ferredoxinas/metabolismo , Nucleótidos de Guanina/química , Nucleótidos de Guanina/genética , Nucleótidos de Guanina/metabolismo , Metaloproteínas/genética , Metaloproteínas/metabolismo , Estructura Molecular , Molibdeno/metabolismo , Cofactores de Molibdeno , Compuestos Organometálicos/metabolismo , Oxidación-Reducción , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Pteridinas/metabolismo , Pterinas/metabolismo
10.
Biochemistry ; 57(19): 2889-2901, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29676148

RESUMEN

The Mo/Cu-dependent CO dehydrogenase (CODH) from Oligotropha carboxidovorans is an enzyme that is able to catalyze both the oxidation of CO to CO2 and the oxidation of H2 to protons and electrons. Despite the close to atomic resolution structure (1.1 Å), significant uncertainties have remained with regard to the reaction mechanism of substrate oxidation at the unique Mo/Cu center, as well as the nature of intermediates formed during the catalytic cycle. So far, the investigation of the role of amino acids at the active site was hampered by the lack of a suitable expression system that allowed for detailed site-directed mutagenesis studies at the active site. Here, we report on the establishment of a functional heterologous expression system of O. carboxidovorans CODH in Escherichia coli. We characterize the purified enzyme in detail by a combination of kinetic and spectroscopic studies and show that it was purified in a form with characteristics comparable to those of the native enzyme purified from O. carboxidovorans. With this expression system in hand, we were for the first time able to generate active-site variants of this enzyme. Our work presents the basis for more detailed studies of the reaction mechanism for CO and H2 oxidation of Mo/Cu-dependent CODHs in the future.


Asunto(s)
Aldehído Oxidorreductasas/biosíntesis , Aldehído Oxidorreductasas/química , Bradyrhizobiaceae/enzimología , Complejos Multienzimáticos/biosíntesis , Complejos Multienzimáticos/química , Aldehído Oxidorreductasas/genética , Catálisis , Dominio Catalítico , Cobre/química , Escherichia coli/genética , Cinética , Molibdeno/química , Complejos Multienzimáticos/genética , Oxidación-Reducción
11.
Biochemistry ; 57(7): 1130-1143, 2018 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-29334455

RESUMEN

The well-studied enterobacterium Escherichia coli present in the human gut can reduce trimethylamine N-oxide (TMAO) to trimethylamine during anaerobic respiration. The TMAO reductase TorA is a monomeric, bis-molybdopterin guanine dinucleotide (bis-MGD) cofactor-containing enzyme that belongs to the dimethyl sulfoxide reductase family of molybdoenzymes. We report on a system for the in vitro reconstitution of TorA with molybdenum cofactors (Moco) from different sources. Higher TMAO reductase activities for TorA were obtained when using Moco sources containing a sulfido ligand at the molybdenum atom. For the first time, we were able to isolate functional bis-MGD from Rhodobacter capsulatus formate dehydrogenase (FDH), which remained intact in its isolated state and after insertion into apo-TorA yielded a highly active enzyme. Combined characterizations of the reconstituted TorA enzymes by electron paramagnetic resonance spectroscopy and direct electrochemistry emphasize that TorA activity can be modified by changes in the Mo coordination sphere. The combination of these results together with studies of amino acid exchanges at the active site led us to propose a novel model for binding of the substrate to the molybdenum atom of TorA.


Asunto(s)
Coenzimas/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Metaloproteínas/metabolismo , Oxidorreductasas N-Desmetilantes/metabolismo , Pteridinas/metabolismo , Nucleótidos de Guanina/metabolismo , Humanos , Modelos Moleculares , Molibdeno/metabolismo , Cofactores de Molibdeno , Pterinas/metabolismo , Sulfuros/metabolismo
12.
Biochim Biophys Acta Bioenerg ; 1859(1): 8-18, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28970007

RESUMEN

Biocatalysts that mediate the H2-dependent reduction of NAD+ to NADH are attractive from both a fundamental and applied perspective. Here we present the first biochemical and spectroscopic characterization of an NAD+-reducing [NiFe]­hydrogenase that sustains catalytic activity at high temperatures and in the presence of O2, which usually acts as an inhibitor. We isolated and sequenced the four structural genes, hoxFUYH, encoding the soluble NAD+-reducing [NiFe]­hydrogenase (SH) from the thermophilic betaproteobacterium, Hydrogenophilus thermoluteolus TH-1T (Ht). The HtSH was recombinantly overproduced in a hydrogenase-free mutant of the well-studied, H2-oxidizing betaproteobacterium Ralstonia eutropha H16 (Re). The enzyme was purified and characterized with various biochemical and spectroscopic techniques. Highest H2-mediated NAD+ reduction activity was observed at 80°C and pH6.5, and catalytic activity was found to be sustained at low O2 concentrations. Infrared spectroscopic analyses revealed a spectral pattern for as-isolated HtSH that is remarkably different from those of the closely related ReSH and other [NiFe]­hydrogenases. This indicates an unusual configuration of the oxidized catalytic center in HtSH. Complementary electron paramagnetic resonance spectroscopic analyses revealed spectral signatures similar to related NAD+-reducing [NiFe]­hydrogenases. This study lays the groundwork for structural and functional analyses of the HtSH as well as application of this enzyme for H2-driven cofactor recycling under oxic conditions at elevated temperatures.


Asunto(s)
Proteínas Bacterianas/química , Cupriavidus necator/enzimología , Calor , Hidrógeno/química , Hidrogenasas/química , Hydrogenophilaceae/enzimología , NAD/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cupriavidus necator/genética , Estabilidad de Enzimas , Hidrógeno/metabolismo , Hidrogenasas/genética , Hidrogenasas/metabolismo , Hydrogenophilaceae/genética , NAD/metabolismo
13.
Biochemistry ; 56(41): 5496-5502, 2017 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-28949132

RESUMEN

B12-dependent proteins are involved in methyl transfer reactions ranging from the biosynthesis of methionine in humans to the formation of acetyl-CoA in anaerobic bacteria. During their catalytic cycle, they undergo large conformational changes to interact with various proteins. Recently, the crystal structure of the B12-containing corrinoid iron-sulfur protein (CoFeSP) in complex with its reductive activator (RACo) was determined, providing a first glimpse of how energy is transduced in the ATP-dependent reductive activation of corrinoid-containing methyltransferases. The thermodynamically uphill electron transfer from RACo to CoFeSP is accompanied by large movements of the cofactor-binding domains of CoFeSP. To refine the structure-based mechanism, we analyzed the conformational change of the B12-binding domain of CoFeSP by pulsed electron-electron double resonance and Förster resonance energy transfer spectroscopy. We show that the site-specific labels on the flexible B12-binding domain and the small subunit of CoFeSP move within 11 Å in the RACo:CoFeSP complex, consistent with the recent crystal structures. By analyzing the transient kinetics of formation and dissociation of the RACo:CoFeSP complex, we determined values of 0.75 µM-1 s-1 and 0.33 s-1 for rate constants kon and koff, respectively. Our results indicate that the large movement observed in crystals also occurs in solution and that neither the formation of the protein encounter complex nor the large movement of the B12-binding domain is rate-limiting for the ATP-dependent reductive activation of CoFeSP by RACo.


Asunto(s)
Proteínas Bacterianas/metabolismo , Coenzimas/metabolismo , Activadores de Enzimas/metabolismo , Firmicutes/enzimología , Proteínas Hierro-Azufre/metabolismo , Modelos Moleculares , Vitamina B 12/metabolismo , Aldehído Oxidorreductasas/química , Aldehído Oxidorreductasas/genética , Aldehído Oxidorreductasas/metabolismo , Sustitución de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Coenzimas/química , Cristalografía por Rayos X , Bases de Datos de Proteínas , Dimerización , Activadores de Enzimas/química , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/genética , Cinética , Complejos Multienzimáticos/química , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/metabolismo , Mutagénesis Sitio-Dirigida , Mutación , Oxidación-Reducción , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Solubilidad , Vitamina B 12/química
14.
Nat Chem Biol ; 10(5): 378-85, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24705592

RESUMEN

Hydrogenases catalyze the reversible oxidation of H(2) into protons and electrons and are usually readily inactivated by O(2). However, a subgroup of the [NiFe] hydrogenases, including the membrane-bound [NiFe] hydrogenase from Ralstonia eutropha, has evolved remarkable tolerance toward O(2) that enables their host organisms to utilize H(2) as an energy source at high O(2). This feature is crucially based on a unique six cysteine-coordinated [4Fe-3S] cluster located close to the catalytic center, whose properties were investigated in this study using a multidisciplinary approach. The [4Fe-3S] cluster undergoes redox-dependent reversible transformations, namely iron swapping between a sulfide and a peptide amide N. Moreover, our investigations unraveled the redox-dependent and reversible occurence of an oxygen ligand located at a different iron. This ligand is hydrogen bonded to a conserved histidine that is essential for H(2) oxidation at high O(2). We propose that these transformations, reminiscent of those of the P-cluster of nitrogenase, enable the consecutive transfer of two electrons within a physiological potential range.


Asunto(s)
Hidrogenasas/metabolismo , Proteínas Hierro-Azufre/metabolismo , Oxígeno/metabolismo , Catálisis , Hidrógeno/metabolismo , Ligandos , Modelos Moleculares , Oxidación-Reducción
15.
J Biol Chem ; 289(11): 7982-93, 2014 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-24448806

RESUMEN

The membrane-bound [NiFe] hydrogenase (MBH) supports growth of Ralstonia eutropha H16 with H2 as the sole energy source. The enzyme undergoes a complex biosynthesis process that proceeds during cell growth even at ambient O2 levels and involves 14 specific maturation proteins. One of these is a rubredoxin-like protein, which is essential for biosynthesis of active MBH at high oxygen concentrations but dispensable under microaerobic growth conditions. To obtain insights into the function of HoxR, we investigated the MBH protein purified from the cytoplasmic membrane of hoxR mutant cells. Compared with wild-type MBH, the mutant enzyme displayed severely decreased hydrogenase activity. Electron paramagnetic resonance and infrared spectroscopic analyses revealed features resembling those of O2-sensitive [NiFe] hydrogenases and/or oxidatively damaged protein. The catalytic center resided partially in an inactive Niu-A-like state, and the electron transfer chain consisting of three different Fe-S clusters showed marked alterations compared with wild-type enzyme. Purification of HoxR protein from its original host, R. eutropha, revealed only low protein amounts. Therefore, recombinant HoxR protein was isolated from Escherichia coli. Unlike common rubredoxins, the HoxR protein was colorless, rather unstable, and essentially metal-free. Conversion of the atypical iron-binding motif into a canonical one through genetic engineering led to a stable reddish rubredoxin. Remarkably, the modified HoxR protein did not support MBH-dependent growth at high O2. Analysis of MBH-associated protein complexes points toward a specific interaction of HoxR with the Fe-S cluster-bearing small subunit. This supports the previously made notion that HoxR avoids oxidative damage of the metal centers of the MBH, in particular the unprecedented Cys6[4Fe-3S] cluster.


Asunto(s)
Proteínas Bacterianas/química , Hidrogenasas/biosíntesis , Rubredoxinas/química , Catálisis , Membrana Celular/enzimología , Cupriavidus necator/enzimología , Espectroscopía de Resonancia por Spin del Electrón , Transporte de Electrón , Metales/química , Modelos Químicos , Oxidación-Reducción , Oxígeno/química , Plásmidos/metabolismo , Espectrofotometría Ultravioleta , Espectroscopía Infrarroja por Transformada de Fourier
16.
Angew Chem Int Ed Engl ; 54(40): 11865-9, 2015 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-26286921

RESUMEN

Mononuclear molybdoenzymes catalyze a broad range of redox reactions and are highly conserved in all kingdoms of life. This study addresses the question of how the Mo cofactor (Moco) is incorporated into the apo form of human sulfite oxidase (hSO) by using site-directed spin labeling to determine intramolecular distances in the nanometer range. Comparative measurements of the holo and apo forms of hSO enabled the localization of the corresponding structural changes, which are localized to a short loop (residues 263-273) of the Moco-containing domain. A flap-like movement of the loop provides access to the Moco binding-pocket in the apo form of the protein and explains the earlier studies on the in vitro reconstitution of apo-hSO with Moco. Remarkably, the loop motif can be found in a variety of structurally similar molybdoenzymes among various organisms, thus suggesting a common mechanism of Moco incorporation.

17.
J Inorg Biochem ; 253: 112487, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38306887

RESUMEN

Metal-dependent, nicotine adenine dinucleotide (NAD+)-dependent formate dehydrogenases (FDHs) are complex metalloenzymes coupling biochemical transformations through intricate electron transfer pathways. Rhodobacter capsulatus FDH is a model enzyme for understanding coupled catalysis, in that reversible CO2 reduction and formate oxidation are linked to a flavin mononuclotide (FMN)-bound diaphorase module via seven iron-sulfur (FeS) clusters as a dimer of heterotetramers. Catalysis occurs at a bis-metal-binding pterin (Mo) binding two molybdopterin guanine dinucleotides (bis-MGD), a protein-based Cys residue and a participatory sulfido ligand. Insights regarding the proposed electron transfer mechanism between the bis-MGD and the FMN have been complicated by the discovery that an alternative pathway might occur via intersubunit electron transfer between two [4Fe4S] clusters within electron transfer distance. To clarify this difference, the redox potentials of the bis-MGD and the FeS clusters were determined via redox titration by EPR spectroscopy. Redox potentials for the bis-MGD cofactor and five of the seven FeS clusters could be assigned. Furthermore, substitution of the active site residue Lys295 with Ala resulted in altered enzyme kinetics, primarily due to a more negative redox potential of the A1 [4Fe4S] cluster. Finally, characterization of the monomeric FdsGBAD heterotetramer exhibited slightly decreased formate oxidation activity and similar iron-sulfur clusters reduced relative to the dimeric heterotetramer. Comparison of the measured redox potentials relative to structurally defined FeS clusters support a mechanism by which electron transfer occurs within a heterotetrameric unit, with the interfacial [4Fe4S] cluster serving as a structural component toward the integrity of the heterodimeric structure to drive efficient catalysis.


Asunto(s)
Formiato Deshidrogenasas , NAD , NAD/química , Formiato Deshidrogenasas/química , Electrones , Oxidación-Reducción , Hierro/química , Azufre/química , Formiatos
18.
Chem Sci ; 15(15): 5564-5572, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38638238

RESUMEN

Compounds containing Mn-O bonds are of utmost importance in biological systems and catalytic processes. Nevertheless, mononuclear manganese complexes containing all O-donor ligands are still rare. Taking advantage of the low tendency of the pentafluoroorthotellurate ligand (teflate, OTeF5) to bridge metal centers, we have synthesized two homoleptic manganese complexes with monomeric structures and an all O-donor coordination sphere. The tetrahedrally distorted MnII anion, [Mn(OTeF5)4]2-, can be described as a high spin d5 complex (S = 5/2), as found experimentally (magnetic susceptibility measurements and EPR spectroscopy) and using theoretical calculations (DFT and CASSCF/NEVPT2). The high spin d4 electronic configuration (S = 2) of the MnIII anion, [Mn(OTeF5)5]2-, was also determined experimentally and theoretically, and a square pyramidal geometry was found to be the most stable one for this complex. Finally, the bonding situation in both complexes was investigated by means of the Interacting Quantum Atoms (IQA) methodology and compared to that of hypothetical mononuclear fluoromanganates. Within each pair of [MnXn]2- (n = 4, 5) species (X = OTeF5, F), the Mn-X interaction is found to be comparable, therefore proving that the similar electronic properties of the teflate and the fluoride are also responsible for the stabilization of these unique species.

19.
Chem Sci ; 14(40): 11105-11120, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37860641

RESUMEN

The membrane-bound [NiFe]-hydrogenase of Cupriavidus necator is a rare example of a truly O2-tolerant hydrogenase. It catalyzes the oxidation of H2 into 2e- and 2H+ in the presence of high O2 concentrations. This characteristic trait is intimately linked to the unique Cys6[4Fe-3S] cluster located in the proximal position to the catalytic center and coordinated by six cysteine residues. Two of these cysteines play an essential role in redox-dependent cluster plasticity, which bestows the cofactor with the capacity to mediate two redox transitions at physiological potentials. Here, we investigated the individual roles of the two additional cysteines by replacing them individually as well as simultaneously with glycine. The crystal structures of the corresponding MBH variants revealed the presence of Cys5[4Fe-4S] or Cys4[4Fe-4S] clusters of different architecture. The protein X-ray crystallography results were correlated with accompanying biochemical, spectroscopic and electrochemical data. The exchanges resulted in a diminished O2 tolerance of all MBH variants, which was attributed to the fact that the modified proximal clusters mediated only one redox transition. The previously proposed O2 protection mechanism that detoxifies O2 to H2O using four protons and four electrons supplied by the cofactor infrastructure, is extended by our results, which suggest efficient shutdown of enzyme function by formation of a hydroxy ligand in the active site that protects the enzyme from O2 binding under electron-deficient conditions.

20.
Drug Metab Dispos ; 40(5): 856-64, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22279051

RESUMEN

Aldehyde oxidase (AO) is a complex molybdo-flavoprotein that belongs to the xanthine oxidase family. AO is active as a homodimer, and each 150-kDa monomer binds two distinct [2Fe2S] clusters, FAD, and the molybdenum cofactor. AO has an important role in the metabolism of drugs based on its broad substrate specificity oxidizing aromatic aza-heterocycles, for example, N(1)-methylnicotinamide and N-methylphthalazinium, or aldehydes, such as benzaldehyde, retinal, and vanillin. Sequencing the 35 coding exons of the human AOX1 gene in a sample of 180 Italian individuals led to the identification of relatively frequent, synonymous, missense and nonsense single-nucleotide polymorphisms (SNPs). Human aldehyde oxidase (hAOX1) was purified after heterologous expression in Escherichia coli. The recombinant protein was obtained with a purity of 95% and a yield of 50 µg/l E. coli culture. Site-directed mutagenesis of the hAOX1 cDNA allowed the purification of protein variants bearing the amino acid changes R802C, R921H, N1135S, and H1297R, which correspond to some of the identified SNPs. The hAOX1 variants were purified and compared with the wild-type protein relative to activity, oligomerization state, and metal content. Our data show that the mutation of each amino acid residue has a variable impact on the ability of hAOX1 to metabolize selected substrates. Thus, the human population is characterized by the presence of functionally inactive hAOX1 allelic variants as well as variants encoding enzymes with different catalytic activities. Our results indicate that the presence of these allelic variants should be considered for the design of future drugs.


Asunto(s)
Aldehído Oxidasa/genética , Aldehído Oxidasa/metabolismo , Polimorfismo de Nucleótido Simple , Sustitución de Aminoácidos , Cromatografía en Gel , Clonación Molecular , Electroforesis en Gel de Poliacrilamida , Escherichia coli/genética , Femenino , Frecuencia de los Genes , Heterocigoto , Homocigoto , Humanos , Italia , Masculino , Modelos Moleculares , Mutación Missense , Preparaciones Farmacéuticas/metabolismo , Multimerización de Proteína , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA