Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Ecology ; 99(1): 91-102, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29121406

RESUMEN

Initial plant establishment is one of the most critical phases in ecosystem development, where an early suite of physical (environmental filtering), biological (seed limitation, species interactions) and stochastic factors may affect successional trajectories and rates. While functional traits are commonly used to study processes that influence plant community assembly in late successional communities, few studies have applied them to primary succession. The objective here was to determine the importance of these factors in shaping early plant community assembly on a glacial outwash plain, Skeiðarársandur, in SE Iceland using a trait based approach. We used data on vascular plant assemblages at two different spatial scales (community and neighborhood) sampled in 2005 and 2012, and compiled a dataset on seven functional traits linked to species dispersal abilities, establishment, and persistence for all species within these assemblages. Trait-based null model analyses were used to determine the processes that influenced plant community assembly from the regional species pool into local communities, and to determine if the importance of these processes in community assembly was dependent on local environment or changed with time. On the community scale, for most traits, random processes dominated the assembly from the regional species pool. However, in some communities, there was evidence of non-random assembly in relation to traits linked to species dispersal abilities, persistence, and establishment. On the neighborhood scale, assembly was mostly random. The relative importance of different processes varied spatially and temporally and the variation was linked to local soil conditions. While stochasticity dominated assembly patterns of our early successional communities, there was evidence of both seed limitation and environmental filtering. Our results indicated that as soil conditions improved, environmental constraints on assembly became weaker and the assembly became more dependent on species availability.


Asunto(s)
Biodiversidad , Ecosistema , Islandia , Plantas , Suelo
2.
Ecol Evol ; 12(10): e9430, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36311404

RESUMEN

Most of the Earth's surface has now been modified by humans. In many countries, natural and semi-natural ecosystems mostly occur as islands, isolated by land converted for agriculture and a variety of other land-uses. In this fragmented state, long-distance dispersal may be the only option for species to adapt their ranges in response to changing climate. The order of arrival of species may leave a lasting imprint on community assembly. Although mostly studied at and above the species level, such priority effects also apply at the intraspecific level. We suggest that this may be particularly important in subarctic and arctic ecosystems. Mountain birch (Betula pubescens ssp. tortuosa) is characterized by great intraspecific variation. We explored spatio-temporal patterns of the first two mountain birch generations on a homogeneous, early successional glacial outwash plain in SE Iceland that was the recipient of spatially extensive long-distance dispersal ca. 30 years ago. We evaluated the decadal progress of the young population by remeasuring in 2018, tree density and growth form, plant size, and reproductive effort on 30 transects (150 m2) established in 2008 at four sites on the plain and two adjacent sites ca. 10 km away. All measured variables showed positive increases, but contrary to our predictions of converging dynamics among sites, they had significantly diverged. Thus, two of the sites (only 500 m apart) could not be distinguished in 2008, but by 2018, one of them had much faster growth rates than the other, a higher growth form index reflecting more upright tree stature, greater reproductive effort, and much greater second-generation seedling recruitment. We discuss two hypotheses that may explain the diverging dynamics, site-scale environmental heterogeneity, and legacies of intraspecific priority effects.

3.
Oecologia ; 114(1): 43-49, 1998 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28307556

RESUMEN

The cool and short growing season that characterizes Arctic climates puts severe constraints on life cycles and reproduction in the Arctic flora. The timing of flowering is particularly critical and may affect both breeding system and reproductive success through the heavy penalties associated with later flowering. An 11-year study of 75 species in the central highland of Iceland showed that the onset of flowering varies greatly among years. The number of species in flower by the first week of July was closely correlated with air temperature (degree days above zero) in the preceding 5 weeks, but no correlations were found with degree days in May or with total degree days in the previous growing season. Time of snowmelt, which has widely been regarded as the environmental event initiating growth and flowering in alpine and arctic tundra, only had a significant effect when two exceptionally cold and late summers were included. The species studied, most of which have a wide distribution in the Arctic, are predicted to respond quickly to warmer spring and early summer temperatures. Accelerated phenologies may alter patterns of resource allocation, have implications for pollinators and pollinator-competition, and could increase the size, species richness and intraspecific genetic diversity of the soil seed bank.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA