RESUMEN
Genetic variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continue to dramatically alter the landscape of the coronavirus disease 2019 (COVID-19) pandemic. The recently described variant of concern designated Omicron (B.1.1.529) has rapidly spread worldwide and is now responsible for the majority of COVID-19 cases in many countries. Because Omicron was recognized recently, many knowledge gaps exist about its epidemiology, clinical severity, and disease course. A genome sequencing study of SARS-CoV-2 in the Houston Methodist health care system identified 4468 symptomatic patients with infections caused by Omicron from late November 2021 through January 5, 2022. Omicron rapidly increased in only 3 weeks to cause 90% of all new COVID-19 cases, and at the end of the study period caused 98% of new cases. Compared with patients infected with either Alpha or Delta variants in our health care system, Omicron patients were significantly younger, had significantly increased vaccine breakthrough rates, and were significantly less likely to be hospitalized. Omicron patients required less intense respiratory support and had a shorter length of hospital stay, consistent with on average decreased disease severity. Two patients with Omicron stealth sublineage BA.2 also were identified. The data document the unusually rapid spread and increased occurrence of COVID-19 caused by the Omicron variant in metropolitan Houston, Texas, and address the lack of information about disease character among US patients.
Asunto(s)
COVID-19 , Vacunas , COVID-19/epidemiología , Hospitalización , Humanos , SARS-CoV-2/genética , Texas/epidemiologíaRESUMEN
Genetic variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have repeatedly altered the course of the coronavirus disease 2019 (COVID-19) pandemic. Delta variants are now the focus of intense international attention because they are causing widespread COVID-19 globally and are associated with vaccine breakthrough cases. We sequenced 16,965 SARS-CoV-2 genomes from samples acquired March 15, 2021, through September 20, 2021, in the Houston Methodist hospital system. This sample represents 91% of all Methodist system COVID-19 patients during the study period. Delta variants increased rapidly from late April onward to cause 99.9% of all COVID-19 cases and spread throughout the Houston metroplex. Compared with all other variants combined, Delta caused a significantly higher rate of vaccine breakthrough cases (23.7% for Delta compared with 6.6% for all other variants combined). Importantly, significantly fewer fully vaccinated individuals required hospitalization. Vaccine breakthrough cases caused by Delta had a low median PCR cycle threshold value (a proxy for high virus load). This value was similar to the median cycle threshold value for unvaccinated patients with COVID-19 caused by Delta variants, suggesting that fully vaccinated individuals can transmit SARS-CoV-2 to others. Patients infected with Alpha and Delta variants had several significant differences. The integrated analysis indicates that vaccines used in the United States are highly effective in decreasing severe COVID-19, hospitalizations, and deaths.
Asunto(s)
COVID-19/virología , SARS-CoV-2 , Adulto , Vacunas contra la COVID-19 , Femenino , Humanos , Masculino , Persona de Mediana Edad , TexasRESUMEN
Certain genetic variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are of substantial concern because they may be more transmissible or detrimentally alter the pandemic course and disease features in individual patients. SARS-CoV-2 genome sequences from 12,476 patients in the Houston Methodist health care system diagnosed from January 1 through May 31, 2021 are reported here. Prevalence of the B.1.1.7 (Alpha) variant increased rapidly and caused 63% to 90% of new cases in the latter half of May. Eleven B.1.1.7 genomes had an E484K replacement in spike protein, a change also identified in other SARS-CoV-2 lineages. Compared with non-B.1.1.7-infected patients, individuals with B.1.1.7 had a significantly lower cycle threshold (a proxy for higher virus load) and significantly higher hospitalization rate. Other variants [eg, B.1.429 and B.1.427 (Epsilon), P.1 (Gamma), P.2 (Zeta), and R.1] also increased rapidly, although the magnitude was less than that in B.1.1.7. Twenty-two patients infected with B.1.617.1 (Kappa) or B.1.617.2 (Delta) variants had a high rate of hospitalization. Breakthrough cases (n = 207) in fully vaccinated patients were caused by a heterogeneous array of virus genotypes, including many not currently designated variants of interest or concern. In the aggregate, this study delineates the trajectory of SARS-CoV-2 variants circulating in a major metropolitan area, documents B.1.1.7 as the major cause of new cases in Houston, TX, and heralds the arrival of B.1.617 variants in the metroplex.