Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Int J Syst Evol Microbiol ; 68(9): 2794-2799, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30180924

RESUMEN

A yellow pigmented and agar-pitting colony was isolated from a water sample obtained from a drainage ditch within a disused system of constructed wetlands. The strain was purified and named MCT13T. This rod-shaped, Gram-negative, oxidase- and catalase-positive, aerobic, non-spore-forming, and non-motile strain formed round colonies and grew optimally at pH 7.5±0.2, at 28-30 °C on LB agar, with 0-0.5 % NaCl. The 16S rRNA gene sequence analysis placed the MCT13T isolate within the Sphingomonas (sensu stricto) cluster. The DNA G+C content was 65.3 %. The only observed ubiquinone was Q10. The major fatty acids included C17 : 1ω6c and C18 : 1ω7c/C18 : 1ω6c. The major polar lipids were sphingoglycolipid, diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol. The major polyamine was spermidine. The 16S rRNA gene phylogenetic analysis performed on the whole sequence, showed the closest relative of MCT13T to be Sphingomonas koreensis (98.52 %); however, there are several genotypic and phenotypic differences between the novel isolate and the type strain JSS26T of S. koreensis. On the basis of these results, strain MCT13T represents a novel species in the genus Sphingomonas, for which the name Sphingomonas turrisvirgatae sp. nov. is proposed. The type strain is MCT13T (=DSM 105457T=BAC RE RSCIC 7T).


Asunto(s)
Agua Dulce/microbiología , Filogenia , Sphingomonas/clasificación , Agar/metabolismo , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Italia , Fosfolípidos/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Espermidina/química , Sphingomonas/genética , Sphingomonas/aislamiento & purificación , Ubiquinona/análogos & derivados , Ubiquinona/química , Humedales
2.
Antimicrob Agents Chemother ; 59(3): 1755-8, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25512428

RESUMEN

The POM-1 metallo-ß-lactamase is a subclass B3 resident enzyme produced by Pseudomonas otitidis, a pathogen causing otic infections. The enzyme was overproduced in Escherichia coli BL21(DE3), purified by chromatography, and subjected to structural and functional analysis. The purified POM-1 is a tetrameric enzyme of broad substrate specificity with higher catalytic activities with penicillins and carbapenems than with cephalosporins.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/farmacología , Pseudomonas/enzimología , Pseudomonas/metabolismo , beta-Lactamasas/metabolismo , beta-Lactamasas/farmacología , Antibacterianos/farmacología , Carbapenémicos/farmacología , Catálisis , Cefalosporinas/farmacología , Escherichia coli/metabolismo , Penicilinas/farmacología
3.
J Basic Microbiol ; 54(11): 1210-21, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24810619

RESUMEN

The phytopathogen Pseudomonas syringae pv. actinidiae (Psa) is the causal agent of bacterial canker of kiwifruit. In the last years, it has caused severe economic losses to Actinidia spp. cultivations, mainly in Italy and New Zealand. Conventional strategies adopted did not provide adequate control of infection. Phage therapy may be a realistic and safe answer to the urgent need for novel antibacterial agents aiming to control this bacterial pathogen. In this study, we described the isolation and characterization of two bacteriophages able to specifically infect Psa. φPSA1, a member of the Siphoviridae family, is a temperate phage with a narrow host range, a long latency, and a burst size of 178; φPSA2 is a lytic phage of Podoviridae family with a broader host range, a short latency, a burst size of 92 and a higher bactericidal activity as determined by the TOD value. The genomic sequence of φPSA1 has a length of 51,090 bp and a low sequence homology with the other siphophages, whereas φPSA2 has a length of 40 472 bp with a 98% homology with Pseudomonas putida bacteriophage gh-1. Of the two phages examined, φPSA2 may be considered as a candidate for phage therapy of kiwifruit disease, while φPSA1 seems specific toward the recent outbreak's isolates and could be useful for Psa typing.


Asunto(s)
Actinidia/microbiología , Fagos Pseudomonas/aislamiento & purificación , Pseudomonas syringae/virología , Bacteriólisis , ADN Viral/química , ADN Viral/genética , Genoma Viral , Especificidad del Huésped , Italia , Lisogenia , Viabilidad Microbiana , Datos de Secuencia Molecular , Nueva Zelanda , Enfermedades de las Plantas/microbiología , Podoviridae/crecimiento & desarrollo , Podoviridae/aislamiento & purificación , Podoviridae/fisiología , Fagos Pseudomonas/clasificación , Fagos Pseudomonas/crecimiento & desarrollo , Fagos Pseudomonas/fisiología , Análisis de Secuencia de ADN , Homología de Secuencia , Siphoviridae/crecimiento & desarrollo , Siphoviridae/aislamiento & purificación , Siphoviridae/fisiología
4.
Front Immunol ; 13: 835417, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35237274

RESUMEN

Klebsiella pneumoniae is an opportunistic pathogen that is very difficult to treat mainly due to its high propensity to acquire complex resistance traits. Notably, multidrug resistance (MDR)-Klebsiella pneumoniae (KP) infections are responsible for 22%-72% of mortality among hospitalized and immunocompromised patients. Although treatments with new drugs or with combined antibiotic therapies have some degree of success, there is still the urgency to investigate and develop an efficient approach against MDR-KP infections. In this study, we have evaluated, in an in vitro model of human macrophages, the efficacy of a combined treatment consisting of apoptotic body-like liposomes loaded with phosphatidylinositol 5-phosphate (ABL/PI5P) and φBO1E, a lytic phage specific for the major high-risk clone of KPC-positive MDR-KP. Results show that ABL/PI5P did not affect in a direct manner KKBO-1 viability, being able to reduce only the intracellular KKBO-1 bacterial load. As expected, φBO1E was effective mainly on reducing extracellular bacilli. Importantly, the combination of both treatments resulted in a simultaneous reduction of both intracellular and extracellular bacilli. Moreover, the combined treatment of KKBO-1-infected cells reduced proinflammatory TNF-α and IL-1ß cytokines and increased anti-inflammatory TGF-ß cytokine production. Overall, our data support the therapeutic value of a combined host- and pathogen-directed therapy as a promising approach, alternative to single treatments, to simultaneously target intracellular and extracellular pathogens and improve the clinical management of patients infected with MDR pathogens such as MDR-KP.


Asunto(s)
Bacteriófagos , Infecciones por Klebsiella , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Humanos , Infecciones por Klebsiella/tratamiento farmacológico , Infecciones por Klebsiella/microbiología , Klebsiella pneumoniae
5.
Antimicrob Agents Chemother ; 55(1): 118-23, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21060106

RESUMEN

Susceptibility to several ß-lactams and ß-lactamase production was investigated in a collection of 20 strains of Pseudomonas otitidis, a new Pseudomonas species that has been recently recognized in association with otic infections in humans. All strains appeared to be susceptible to piperacillin, cefotaxime, ceftazidime, and aztreonam, while resistance or decreased susceptibility to carbapenems was occasionally observed. All strains were found to express metallo-ß-lactamase (MBL) activity and to carry a new subclass B3 MBL gene, named bla(POM), that appeared to be highly conserved in this species. P. otitidis, therefore, is the first example of a pathogenic Pseudomonas species endowed with a resident MBL. The POM-1 protein from P. otitidis type strain MCC10330 exhibits the closest similarity (60 to 64%) to the L1 MBL of Stenotrophomonas maltophilia. Expression in Escherichia coli and Pseudomonas aeruginosa revealed that, similar to L1 and other subclass B3 MBLs, POM-1 confers decreased susceptibility or resistance to carbapenems, penicillins, and cephalosporins but not to aztreonam. Expression of the POM MBL in P. otitidis is apparently constitutive and, in most strains, does not confer a carbapenem-resistant phenotype. However, a strong inoculum size effect was observed for carbapenem MICs, and carbapenem-resistant mutants could be readily selected upon exposure to imipenem, suggesting that carbapenem-based regimens should be considered with caution for P. otitidis infections.


Asunto(s)
Proteínas Bacterianas/metabolismo , beta-Lactamasas/metabolismo , Secuencia de Aminoácidos , Antibacterianos/farmacología , Proteínas Bacterianas/química , Proteínas Bacterianas/clasificación , Proteínas Bacterianas/genética , Carbapenémicos/farmacología , Farmacorresistencia Bacteriana/genética , Pruebas de Sensibilidad Microbiana , Datos de Secuencia Molecular , Filogenia , Pseudomonas , Homología de Secuencia de Aminoácido , beta-Lactamasas/química , beta-Lactamasas/clasificación , beta-Lactamasas/genética
6.
Antibiotics (Basel) ; 10(8)2021 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-34438935

RESUMEN

The improper use of antibiotics by humans may promote the dissemination of resistance in wildlife. The persistence and spread of acquired antibiotic resistance and human-associated bacteria in the environment, while representing a threat to wildlife, can also be exploited as a tool to monitor the extent of human impact, particularly on endangered animal species. Hence, we investigated both the associated enterobacterial species and the presence of acquired resistance traits in the cloacal microbiota of the critically endangered lesser Antillean iguana (Iguana delicatissima), by comparing two separate populations living in similar climatic conditions but exposed to different anthropic pressures. A combination of techniques, including direct plating, DNA sequencing and antimicrobial susceptibility testing allowed us to characterize the dominant enterobacterial populations, the antibiotic resistant strains and their profiles. A higher frequency of Escherichia coli was found in the samples from the more anthropized site, where multi-drug resistant strains were also isolated. These results confirm how human-associated bacteria as well as their antibiotic-resistance determinants may be transferred to wildlife, which, in turn, may act as a reservoir of antibiotic resistance.

7.
Microorganisms ; 9(4)2021 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-33917365

RESUMEN

Phage therapy is now reconsidered with interest in the treatment of bacterial infections. A major piece of information for this application is the definition of the molecular targets exploited by phages to infect bacteria. Here, the genetic basis of resistance to the lytic phage φBO1E by its susceptible host Klebsiella pneumoniae KKBO-1 has been investigated. KKBO-1 phage-resistant mutants were obtained by infection at high multiplicity. One mutant, designated BO-FR-1, was selected for subsequent experiments, including virulence assessment in a Galleria mellonella infection model and characterization by whole-genome sequencing. Infection with BO-FR-1 was associated with a significantly lower mortality when compared to that of the parental strain. The BO-FR-1 genome differed from KKBO-1 by a single nonsense mutation into the wbaP gene, which encodes a glycosyltransferase involved in the first step of the biosynthesis of the capsular polysaccharide (CPS). Phage susceptibility was restored when BO-FR-1 was complemented with the constitutive wbaP gene. Our results demonstrated that φBO1E infects KKBO-1 targeting the bacterial CPS. Interestingly, BO-FR-1 was less virulent than the parental strain, suggesting that in the context of the interplay among phage, bacterial pathogen and host, the emergence of phage resistance may be beneficial for the host.

8.
Front Microbiol ; 11: 598945, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33408706

RESUMEN

Ancient parchments record an immense part of our cultural heritage, having been used as the main written support material for centuries. Parchment easily undergoes biodeterioration, whose main signs are the so-called purple spots, which often lead to detachment of the superficial written layer. Up to recent years, several studies have been analyzing damaged parchments from different world's archives, trying to trace back the culprit of the purple spots. However, standard cultivation and early molecular techniques have been demonstrated to be unsuccessful, leading the parchment damage issue remaining unsolved for many years. Nowadays, some studies have explored the parchment biodeterioration dynamics by adopting a multidisciplinary approach combining standard microbiological methods with high-throughput molecular, chemical and physical techniques. This approach allowed an unprecedented level of knowledge on the complex dynamics of parchment biodeterioration. This mini review discusses the application of the combination of basic and high-throughput techniques to study historical parchments, highlighting the strengths and weaknesses of this approach. In particular, it focuses on how metagenomics has been paramount for the unequivocal identification of the microbial main actors of parchment biodeterioration and their dynamics, but also on how metagenomics may suffer the distortion inflict by the historical perspective on the analysis of ancient specimens. As a whole, this mini review aims to describe the scenario of information on parchment biodeterioration obtained so far by using the integration of metagenomic with recent chemical (Raman spectroscopy) and physical (Light Transmission Analysis) approaches, which might have key implications in the preservation of many ancient documents.

9.
Antibiotics (Basel) ; 9(4)2020 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-32268481

RESUMEN

Sea turtles have been proposed as health indicators of marine habitats and carriers of antibiotic-resistant bacterial strains, for their longevity and migratory lifestyle. Up to now, a few studies evaluated the antibacterial resistant flora of Mediterranean loggerhead sea turtles (Caretta caretta) and most of them were carried out on stranded or recovered animals. In this study, the isolation and the antibiotic resistance profile of 90 Gram negative bacteria from cloacal swabs of 33 Mediterranean wild captured loggerhead sea turtles are described. Among sea turtles found in their foraging sites, 23 were in good health and 10 needed recovery for different health problems (hereafter named weak). Isolated cloacal bacteria belonged mainly to Enterobacteriaceae (59%), Shewanellaceae (31%) and Vibrionaceae families (5%). Although slight differences in the bacterial composition, healthy and weak sea turtles shared antibiotic-resistant strains. In total, 74 strains were endowed with one or multi resistance (up to five different drugs) phenotypes, mainly towards ampicillin (~70%) or sulfamethoxazole/trimethoprim (more than 30%). Hence, our results confirmed the presence of antibiotic-resistant strains also in healthy marine animals and the role of the loggerhead sea turtles in spreading antibiotic-resistant bacteria.

10.
J Glob Antimicrob Resist ; 21: 68-75, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31678321

RESUMEN

OBJECTIVES: The aim of this study is to characterize a new bacteriophage able to infect Enterococcus faecalis, and to evaluate its ability to disrupt biofilm. METHODS: The vB_EfaH_EF1TV (EF1TV) host-range was determined by spot test and efficiency of plating using a collection of 15E. faecalis clinical strains. The phage genome was sequenced with a next generation sequencing approach. Anti-biofilm activity was tested by crystal violet method and confocal laser scanning microscopy. Phage-resistant mutants were selected and sequenced to investigate receptors exploited by phage for infection. RESULTS: EF1TV is a newly discoveredE. faecalis phage which belongs to the Herelleviridae family. EF1TV, whose genome is 98% identical to φEF24C, is characterized by a linear dsDNA genome of 143,507 bp with direct terminal repeats of 1,911 bp. The phage is able to infect E. faecalis and shows also the ability to degrade biofilm produced by strains of this species. The results were confirmed by confocal laser scanning microscopy analyzing the biofilm reduction in the same optical field before and after phage infection. CONCLUSIONS: The EF1TV phage shows promising features such as an obligatory lytic nature, an anti-biofilm activity and the absence of integration-related proteins, antibiotic resistance determinants and virulence factors, and therefore could be a promising tool for therapeutic applications.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Caudovirales/fisiología , Enterococcus faecalis/fisiología , Secuenciación Completa del Genoma/métodos , Bacteriólisis , Enterococcus faecalis/ultraestructura , Enterococcus faecalis/virología , Tamaño del Genoma , Genoma Viral , Secuenciación de Nucleótidos de Alto Rendimiento , Microscopía Confocal
11.
Viruses ; 12(8)2020 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-32824138

RESUMEN

Members of Sphingomonas genus have gained a notable interest for their use in a wide range of biotechnological applications, ranging from bioremediation to the production of valuable compounds of industrial interest. To date, knowledge on phages targeting Sphingomonas spp. are still scarce. Here, we describe and characterize a lytic bacteriophage, named vB_StuS_MMDA13, able to infect the Sphingomonas turrisvirgatae MCT13 type strain. Physiological characterization demonstrated that vB_StuS_MMDA13 has a narrow host range, a long latency period, a low burst size, and it is overall stable to both temperature and pH variations. The phage has a double-stranded DNA genome of 63,743 bp, with 89 open reading frames arranged in two opposite arms separated by a 1186 bp non-coding region and shows a very low global similarity to any other known phages. Interestingly, vB_StuS_MMDA13 is endowed with an original nucleotide modification biosynthetic gene cluster, which greatly differs from those of its most closely related phages of the Nipunavirus genus. vB_StuS_MMDA13 is the first characterized lytic bacteriophage of the Siphoviridae family infecting members of the Sphingomonas genus.


Asunto(s)
Bacteriófagos/clasificación , Bacteriófagos/aislamiento & purificación , Filogenia , Sphingomonas/virología , Agar/metabolismo , ADN Viral/genética , Genoma Viral , Especificidad del Huésped , Familia de Multigenes , Sistemas de Lectura Abierta , Análisis de Secuencia de ADN , Sphingomonas/metabolismo
12.
Sci Rep ; 9(1): 1623, 2019 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-30733463

RESUMEN

The preservation of cultural heritage is one of the major challenges of today's society. Parchments, a semi-solid matrix of collagen produced from animal skin, are a significant part of the cultural heritage, being used as writing material since ancient times. Due to their animal origin, parchments easily undergo biodeterioration: the most common biological damage is characterized by isolated or coalescent purple spots, that often lead to the detachment of the superficial layer and the consequent loss of written content. Although many parchments with purple spot biodegradative features were studied, no common causative agent had been identified so far. In a previous study a successional model has been proposed, basing on the multidisciplinary analysis of damaged versus undamaged samples from a moderately damaged document. Although no specific sequences were observed, the results pointed to Halobacterium salinarum as the starting actor of the succession. In this study, to further investigate this topic, three dramatically damaged parchments were analysed; belonging to a collection archived as Faldone Patrizi A 19, and dated back XVI-XVII century A.D. With the same multidisciplinary approach, the Next Generation Sequencing (NGS, Illumina platform) revealed DNA sequences belonging to Halobacterium salinarum; the RAMAN spectroscopy identified the pigment within the purple spots as haloarchaeal bacterioruberin and bacteriorhodopsine, and the LTA technique quantified the extremely damaged collagen structures through the entire parchments, due to the biological attack to the parchment frame structures. These results allowed to propose a model of the progressive degradation pattern of the parchment collagen. Overall, these data validate a multi-phase microbial succession model. This demonstration is pivotal to possible new restoration strategies, important for a huge number of ancient documents.


Asunto(s)
Colágeno/metabolismo , Halobacterium/fisiología , Biodegradación Ambiental , Colágeno/química , Halobacterium/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Metagenoma , Papel , Reproducibilidad de los Resultados , Espectrometría Raman
13.
Antibiotics (Basel) ; 8(4)2019 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-31817707

RESUMEN

Antibiotic resistance in bacterial pathogens has currently reached very high and alarming levels [...].

14.
Front Microbiol ; 10: 2459, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31736905

RESUMEN

Animal hides are one of man's earliest and mostly used materials; many rawhide products, primarily leather, have for centuries been used for several purposes. The peculiar mechanical properties of leather depend on the hide composition, a dense collagen feltwork. Unfortunately, due to their proteic composition, rawhides may undergo microbial attack and biodeterioration. Over centuries, different processes and treatments (brining, vegetal or chrome tanning, tawing, etc.) were set up to face the biological attack and modify/stabilise the hide's mechanical properties. Nevertheless, even present-day rawhides are subjected to biological colonisation, and traces of this colonisation are clearly shown in Chrome(III) tanned leathers (in the wet blue stage), with obvious economic damages. The colonisation traces on tanned leathers consist of isolated or coalescent red patches, known as red heat deterioration. Parchments are rawhide products, too; they derive from another manufacturing procedure. Even parchments undergo microbial attack; the parchment biodeterioration seems comparable to leather red heat deterioration and is known as purple spots. Recently, an ecological succession model explained the process of historical parchment purple spot deterioration; the haloarchaea Halobacterium salinarum is the pioneer organism triggering this attack. The marine salt used to prevent rawhide rotting is the carrier of haloarchaea colonisers (Migliore et al., 2019). The aim of this study was to investigate the dynamics of biodeterioration on Chrome(III) tanned leathers and its effects on the stability/integrity of collagen structure. To this end, standard cultivation methods were integrated with three updated technologies, Next-Generation Sequencing (NGS), Raman spectroscopy, and Light Transmitted Analysis (LTA). A bioinformatic comparison between chrome tanned leather vs. historical parchment colonisers was performed to evaluate if leather and parchment share common culprits; furthermore, the effect of the biodeterioration on the physical properties of the hide product was evaluated.

15.
PLoS One ; 14(3): e0213150, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30830942

RESUMEN

In nature, many plants or their extracted compounds have been found to possess anti-inflammatory features and therapeutic properties against infectious as well as non-infectious diseases, including cancer. In this study, we analysed the immunomodulatory effects on innate immune cells of hydroalcoholic extract from Origanum vulgare L. ssp. hirtum (HyE-Ov), a plant traditionally known for its anti-oxidative properties. The effects of HyE-Ov were tested on human monocyte derived dendritic cells (DC), type-1 (M1) and type-2 macrophages (M2) infected with M. bovis Bacille Calmette-Guérin (BCG), used as a model of persistent intracellular bacterium. DC, M1 and M2 treated with HyE-Ov significantly enhanced their mycobactericidal activity, which was associated with phagosomal acidification in M1 and M2 and increase of phagosomal, but not mitochondrial ROS production in M1, M2, and DC. Treatment of BCG-infected DC with HyE-Ov significantly reduced TNF-α and IL-12 production and increased TGF-ß synthesis. Finally, experiments were repeated using eight different HPLC fractions of HyE-Ov. Results showed that the capability to activate anti-microbial and anti-inflammatory response is shared by different fractions, suggesting that diverse bioactive molecules are present within the hydroalcoholic extract. Altogether, these results show that HyE-Ov promotes anti-mycobacterial innate immunity and limits inflammatory response in vitro and suggest that this plant extract may be exploitable as phytocomplex or nutraceutical for novel host-directed therapeutic approaches.


Asunto(s)
Alcoholes/farmacología , Antiinfecciosos/farmacología , Antiinflamatorios/farmacología , Células Dendríticas/efectos de los fármacos , Macrófagos/efectos de los fármacos , Mycobacterium bovis/efectos de los fármacos , Origanum/química , Alcoholes/química , Antiinfecciosos/química , Antiinflamatorios/química , Células Cultivadas , Células Dendríticas/citología , Células Dendríticas/inmunología , Células Dendríticas/microbiología , Voluntarios Sanos , Humanos , Inmunidad Innata/efectos de los fármacos , Interleucina-2/metabolismo , Macrófagos/citología , Macrófagos/inmunología , Macrófagos/microbiología , Mycobacterium bovis/patogenicidad , Fagosomas/metabolismo , Extractos Vegetales/química , Extractos Vegetales/farmacología , Factor de Crecimiento Transformador beta/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
16.
Viruses ; 10(9)2018 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-30205588

RESUMEN

Resistance to carbapenems in Enterobacteriaceae, including Klebsiella pneumoniae, represents a major clinical problem given the lack of effective alternative antibiotics. Bacteriophages could provide a valuable tool to control the dissemination of antibiotic resistant isolates, for the decolonization of colonized individuals and for treatment purposes. In this work, we have characterized a lytic bacteriophage, named vB_Kpn_F48, specific for K. pneumoniae isolates belonging to clonal group 101. Phage vB_Kpn_F48 was classified as a member of Myoviridae, order Caudovirales, on the basis of transmission electron microscopy analysis. Physiological characterization demonstrated that vB_Kpn_F48 showed a narrow host range, a short latent period, a low burst size and it is highly stable to both temperature and pH variations. High throughput sequencing and bioinformatics analysis revealed that the phage is characterized by a 171 Kb dsDNA genome that lacks genes undesirable for a therapeutic perspective such integrases, antibiotic resistance genes and toxin encoding genes. Phylogenetic analysis suggests that vB_Kpn_F48 is a T4-like bacteriophage which belongs to a novel genus within the Tevenvirinae subfamily, which we tentatively named "F48virus". Considering the narrow host range, the genomic features and overall physiological parameters phage vB_Kpn_F48 could be a promising candidate to be used alone or in cocktails for phage therapy applications.


Asunto(s)
Bacteriólisis , Bacteriófagos/crecimiento & desarrollo , Bacteriófagos/aislamiento & purificación , Klebsiella pneumoniae/virología , Myoviridae/crecimiento & desarrollo , Myoviridae/aislamiento & purificación , Bacteriófagos/clasificación , Bacteriófagos/genética , Biología Computacional , Secuenciación de Nucleótidos de Alto Rendimiento , Especificidad del Huésped , Concentración de Iones de Hidrógeno , Microscopía Electrónica de Transmisión , Myoviridae/clasificación , Myoviridae/genética , Filogenia , Homología de Secuencia , Temperatura , Virión/ultraestructura
17.
Biochim Biophys Acta ; 1764(1): 13-9, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16297670

RESUMEN

The AphA enzyme of Escherichia coli, a molecular class B periplasmic phosphatase that belongs to the DDDD superfamily of phosphohydrolases, was purified and subjected to biochemical characterization. Kinetic analysis with several substrates revealed that the enzyme essentially behaves as a broad-spectrum nucleotidase highly active on 3'- and 5'-mononucleotides and monodeoxynucleotides, but not active on cyclic nucleotides, or nucleotides di- and triphosphate. Mononucleotides are degraded to nucleosides, and AphA apparently does not exhibit any nucleotide phosphomutase activity. However, it can transphosphorylate nucleosides in the presence of phosphate donors. Kinetic properties of AphA are consistent with structural data, and suggest a role for the hydrophobic pocket present in the active site crevice, made by residues Phe 56, Leu71, Trp77 and Tyr193, in conferring preferential substrate specificity by accommodating compounds with aromatic rings. AphA was inhibited by several chelating agents, including EDTA, EGTA, 1,10-phenanthroline and dipicolinic acid, with EDTA being apparently the most powerful inhibitor.


Asunto(s)
Fosfatasa Ácida/química , Fosfatasa Ácida/metabolismo , Escherichia coli/enzimología , Fosfatasa Ácida/antagonistas & inhibidores , Dominio Catalítico , Quelantes/farmacología , Inhibidores Enzimáticos/farmacología , Cinética , Modelos Moleculares , Nucleótidos/metabolismo , Estructura Cuaternaria de Proteína , Especificidad por Sustrato , Termodinámica
18.
J Mol Biol ; 355(4): 708-21, 2006 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-16330049

RESUMEN

The Escherichia coli gene aphA codes for a periplasmic acid phosphatase called AphA, belonging to class B bacterial phosphatases, which is part of the DDDD superfamily of phosphohydrolases. After our first report about its crystal structure, we have started a series of crystallographic studies aimed at understanding of the catalytic mechanism of the enzyme. Here, we report three crystal structures of the AphA enzyme in complex with the hydrolysis products of nucleoside monophosphate substrates and a fourth with a proposed intermediate analogue that appears to be covalently bound to the enzyme. Comparison with the native enzyme structure and with the available X-ray structures of different phosphatases provides clues about the enzyme chemistry and allows us to propose a catalytic mechanism for AphA, and to discuss it with respect to the mechanism of other bacterial and human phosphatases.


Asunto(s)
Fosfatasa Ácida/química , Fosfatasa Ácida/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Monoéster Fosfórico Hidrolasas/química , Monoéster Fosfórico Hidrolasas/metabolismo , Fosfatasa Ácida/genética , Adenosina Monofosfato/química , Adenosina Monofosfato/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Catálisis , Secuencia Conservada , Cristalografía por Rayos X , Desoxicitidina Monofosfato/química , Desoxicitidina Monofosfato/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Ligandos , Modelos Moleculares , Datos de Secuencia Molecular , Monoéster Fosfórico Hidrolasas/clasificación , Monoéster Fosfórico Hidrolasas/genética , Estructura Cuaternaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Relación Estructura-Actividad , Especificidad por Sustrato
19.
Sci Rep ; 7(1): 9521, 2017 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-28883416

RESUMEN

Ancient parchments are commonly attacked by microbes, producing purple spots and detachment of the superficial layer. Neither standard cultivation nor molecular methods (DGGE) solved the issue: causative agents and colonization model are still unknown. To identify the putative causal agents, we describe the 16 S rRNA gene analysis (454-pyrosequencing) of the microbial communities colonizing a damaged parchment roll dated 1244 A.D. (A.A. Arm. I-XVIII 3328, Vatican Secret Archives). The taxa in damaged or undamaged areas of the same document were different. In the purple spots, marine halotolerant Gammaproteobacteria, mainly Vibrio, were found; these microorganisms are rare or absent in the undamaged areas. Ubiquitous and environmental microorganisms were observed in samples from both damaged and undamaged areas. Pseudonocardiales were the most common, representing the main colonizers of undamaged areas. We hypothesize a successional model of biodeterioration, based on metagenomic data and spectroscopic analysis of pigments, which help to relate the damage to a microbial agent. Furthermore, a new method (Light Transmitted Analysis) was utilized to evaluate the kind and entity of the damage to native collagen. These data give a significant advance to the knowledge in the field and open new perspectives to remediation activity on a huge amount of ancient document.

20.
Sci Rep ; 7(1): 2614, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28572684

RESUMEN

The pandemic dissemination of KPC carbapenemase-producing Klebsiella pneumoniae (KPC-KP) represents a major public health problem, given their extensive multidrug resistance profiles and primary role in causing healthcare-associated infections. This phenomenon has largely been contributed by strains of Clonal Group (CG) 258, mostly of clade II, which in some areas represent the majority of KPC-KP isolates. Here we have characterized a newly discovered lytic Podoviridae, named φBO1E, targeting KPC-KP strains of clade II lineage of CG258. Genomic sequencing revealed that φBO1E belongs to the Kp34virus genus (87% nucleotide identity to vB_KpnP_SU552A). ΦBO1E was stable over a broad pH and temperature range, exhibited strict specificity for K. pneumoniae strains of clade II of CG258, and was unable to establish lysogeny. In a Galleria mellonella infection model, φBO1E was able to protect larvae from death following infection with KPC-KP strains of clade II of CG258, including one colistin resistant strain characterized by a hypermucoviscous phenotype. To our best knowledge φBO1E is the first characterized lytic phage targeting K. pneumoniae strains of this pandemic clonal lineage. As such, it could be of potential interest to develop new agents for treatment of KPC-KP infections and for decolonization of subjects chronically colonized by these resistant superbugs.


Asunto(s)
Antibacterianos/administración & dosificación , Bacteriófagos/genética , Farmacorresistencia Bacteriana , Infecciones por Klebsiella/prevención & control , Klebsiella pneumoniae/efectos de los fármacos , Antibacterianos/química , Antibacterianos/aislamiento & purificación , Proteínas Bacterianas/metabolismo , Bacteriófagos/química , Bacteriófagos/aislamiento & purificación , Pandemias , beta-Lactamasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA