Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Proteome Res ; 15(3): 1023-32, 2016 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-26860878

RESUMEN

The Clinical Proteomic Tumor Analysis Consortium (CPTAC) has produced large proteomics data sets from the mass spectrometric interrogation of tumor samples previously analyzed by The Cancer Genome Atlas (TCGA) program. The availability of the genomic and proteomic data is enabling proteogenomic study for both reference (i.e., contained in major sequence databases) and nonreference markers of cancer. The CPTAC laboratories have focused on colon, breast, and ovarian tissues in the first round of analyses; spectra from these data sets were produced from 2D liquid chromatography-tandem mass spectrometry analyses and represent deep coverage. To reduce the variability introduced by disparate data analysis platforms (e.g., software packages, versions, parameters, sequence databases, etc.), the CPTAC Common Data Analysis Platform (CDAP) was created. The CDAP produces both peptide-spectrum-match (PSM) reports and gene-level reports. The pipeline processes raw mass spectrometry data according to the following: (1) peak-picking and quantitative data extraction, (2) database searching, (3) gene-based protein parsimony, and (4) false-discovery rate-based filtering. The pipeline also produces localization scores for the phosphopeptide enrichment studies using the PhosphoRS program. Quantitative information for each of the data sets is specific to the sample processing, with PSM and protein reports containing the spectrum-level or gene-level ("rolled-up") precursor peak areas and spectral counts for label-free or reporter ion log-ratios for 4plex iTRAQ. The reports are available in simple tab-delimited formats and, for the PSM-reports, in mzIdentML. The goal of the CDAP is to provide standard, uniform reports for all of the CPTAC data to enable comparisons between different samples and cancer types as well as across the major omics fields.


Asunto(s)
Neoplasias/diagnóstico , Neoplasias/metabolismo , Proteómica , Biomarcadores de Tumor/metabolismo , Humanos , Proteoma/metabolismo
2.
J Proteome Res ; 14(6): 2707-13, 2015 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-25873244

RESUMEN

The Clinical Proteomic Tumor Analysis Consortium (CPTAC), under the auspices of the National Cancer Institute's Office of Cancer Clinical Proteomics Research, is a comprehensive and coordinated effort to accelerate the understanding of the molecular basis of cancer through the application of proteomic technologies and workflows to clinical tumor samples with characterized genomic and transcript profiles. The consortium analyzes cancer biospecimens using mass spectrometry, identifying and quantifying the constituent proteins and characterizing each tumor sample's proteome. Mass spectrometry enables highly specific identification of proteins and their isoforms, accurate relative quantitation of protein abundance in contrasting biospecimens, and localization of post-translational protein modifications, such as phosphorylation, on a protein's sequence. The combination of proteomics, transcriptomics, and genomics data from the same clinical tumor samples provides an unprecedented opportunity for tumor proteogenomics. The CPTAC Data Portal is the centralized data repository for the dissemination of proteomic data collected by Proteome Characterization Centers (PCCs) in the consortium. The portal currently hosts 6.3 TB of data and includes proteomic investigations of breast, colorectal, and ovarian tumor tissues from The Cancer Genome Atlas (TCGA). The data collected by the consortium is made freely available to the public through the data portal.


Asunto(s)
Investigación Biomédica , Bases de Datos de Proteínas , Proteínas de Neoplasias , Proteómica , Humanos , Almacenamiento y Recuperación de la Información , Proteínas de Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/metabolismo
3.
Nucleic Acids Res ; 40(Database issue): D834-40, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22102591

RESUMEN

We have recently developed the Inferred Biomolecular Interaction Server (IBIS) and database, which reports, predicts and integrates different types of interaction partners and locations of binding sites in proteins based on the analysis of homologous structural complexes. Here, we highlight several new IBIS features and options. The server's webpage is now redesigned to allow users easier access to data for different interaction types. An entry page is added to give a quick summary of available results and to now accept protein sequence accessions. To elucidate the formation of protein complexes, not just binary interactions, IBIS currently presents an expandable interaction network. Previously, IBIS provided annotations for four different types of binding partners: proteins, small molecules, nucleic acids and peptides; in the current version a new protein-ion interaction type has been added. Several options provide easy downloads of IBIS data for all Protein Data Bank (PDB) protein chains and the results for each query. In this study, we show that about one-third of all RefSeq sequences can be annotated with IBIS interaction partners and binding sites. The IBIS server is available at http://www.ncbi.nlm.nih.gov/Structure/ibis/ibis.cgi and updated biweekly.


Asunto(s)
Bases de Datos de Proteínas , Mapeo de Interacción de Proteínas , Proteínas/química , Sitios de Unión , Gráficos por Computador , Iones/química , Anotación de Secuencia Molecular , Complejos Multiproteicos/química , Ácidos Nucleicos/química , Péptidos/química , Análisis de Secuencia de Proteína , Integración de Sistemas , Interfaz Usuario-Computador
4.
Cancer Res ; 84(9): 1388-1395, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38488507

RESUMEN

Since 2014, the NCI has launched a series of data commons as part of the Cancer Research Data Commons (CRDC) ecosystem housing genomic, proteomic, imaging, and clinical data to support cancer research and promote data sharing of NCI-funded studies. This review describes each data commons (Genomic Data Commons, Proteomic Data Commons, Integrated Canine Data Commons, Cancer Data Service, Imaging Data Commons, and Clinical and Translational Data Commons), including their unique and shared features, accomplishments, and challenges. Also discussed is how the CRDC data commons implement Findable, Accessible, Interoperable, Reusable (FAIR) principles and promote data sharing in support of the new NIH Data Management and Sharing Policy. See related articles by Brady et al., p. 1384, Pot et al., p. 1396, and Kim et al., p. 1404.


Asunto(s)
Difusión de la Información , National Cancer Institute (U.S.) , Neoplasias , Humanos , Estados Unidos , Neoplasias/metabolismo , Difusión de la Información/métodos , Investigación Biomédica , Genómica/métodos , Animales , Proteómica/métodos
5.
Nucleic Acids Res ; 38(Database issue): D518-24, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19843613

RESUMEN

IBIS is the NCBI Inferred Biomolecular Interaction Server. This server organizes, analyzes and predicts interaction partners and locations of binding sites in proteins. IBIS provides annotations for different types of binding partners (protein, chemical, nucleic acid and peptides), and facilitates the mapping of a comprehensive biomolecular interaction network for a given protein query. IBIS reports interactions observed in experimentally determined structural complexes of a given protein, and at the same time IBIS infers binding sites/interacting partners by inspecting protein complexes formed by homologous proteins. Similar binding sites are clustered together based on their sequence and structure conservation. To emphasize biologically relevant binding sites, several algorithms are used for verification in terms of evolutionary conservation, biological importance of binding partners, size and stability of interfaces, as well as evidence from the published literature. IBIS is updated regularly and is freely accessible via http://www.ncbi.nlm.nih.gov/Structure/ibis/ibis.html.


Asunto(s)
Biología Computacional/métodos , Bases de Datos Genéticas , Bases de Datos de Proteínas , Mapeo de Interacción de Proteínas/métodos , Estructura Terciaria de Proteína , Algoritmos , Animales , Sitios de Unión , Dominio Catalítico , Análisis por Conglomerados , Biología Computacional/tendencias , Humanos , Almacenamiento y Recuperación de la Información/métodos , Internet , Proteínas Tirosina Quinasas/química , Programas Informáticos
6.
BMC Bioinformatics ; 11: 365, 2010 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-20594344

RESUMEN

BACKGROUND: The study of protein-small molecule interactions is vital for understanding protein function and for practical applications in drug discovery. To benefit from the rapidly increasing structural data, it is essential to improve the tools that enable large scale binding site prediction with greater emphasis on their biological validity. RESULTS: We have developed a new method for the annotation of protein-small molecule binding sites, using inference by homology, which allows us to extend annotation onto protein sequences without experimental data available. To ensure biological relevance of binding sites, our method clusters similar binding sites found in homologous protein structures based on their sequence and structure conservation. Binding sites which appear evolutionarily conserved among non-redundant sets of homologous proteins are given higher priority. After binding sites are clustered, position specific score matrices (PSSMs) are constructed from the corresponding binding site alignments. Together with other measures, the PSSMs are subsequently used to rank binding sites to assess how well they match the query and to better gauge their biological relevance. The method also facilitates a succinct and informative representation of observed and inferred binding sites from homologs with known three-dimensional structures, thereby providing the means to analyze conservation and diversity of binding modes. Furthermore, the chemical properties of small molecules bound to the inferred binding sites can be used as a starting point in small molecule virtual screening. The method was validated by comparison to other binding site prediction methods and to a collection of manually curated binding site annotations. We show that our method achieves a sensitivity of 72% at predicting biologically relevant binding sites and can accurately discriminate those sites that bind biological small molecules from non-biological ones. CONCLUSIONS: A new algorithm has been developed to predict binding sites with high accuracy in terms of their biological validity. It also provides a common platform for function prediction, knowledge-based docking and for small molecule virtual screening. The method can be applied even for a query sequence without structure. The method is available at http://www.ncbi.nlm.nih.gov/Structure/ibis/ibis.cgi.


Asunto(s)
Algoritmos , Sitios de Unión , Proteínas/química , Proteínas/metabolismo , Secuencia de Aminoácidos , Análisis por Conglomerados , Bases del Conocimiento , Unión Proteica , Análisis de Secuencia de Proteína , Homología Estructural de Proteína
7.
BMC Struct Biol ; 8: 55, 2008 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-19111067

RESUMEN

BACKGROUND: Disulphide bridges are well known to play key roles in stability, folding and functions of proteins. Introduction or deletion of disulphides by site-directed mutagenesis have produced varying effects on stability and folding depending upon the protein and location of disulphide in the 3-D structure. Given the lack of complete understanding it is worthwhile to learn from an analysis of extent of conservation of disulphides in homologous proteins. We have also addressed the question of what structural interactions replaces a disulphide in a homologue in another homologue. RESULTS: Using a dataset involving 34,752 pairwise comparisons of homologous protein domains corresponding to 300 protein domain families of known 3-D structures, we provide a comprehensive analysis of extent of conservation of disulphide bridges and their structural features. We report that only 54% of all the disulphide bonds compared between the homologous pairs are conserved, even if, a small fraction of the non-conserved disulphides do include cytoplasmic proteins. Also, only about one fourth of the distinct disulphides are conserved in all the members in protein families. We note that while conservation of disulphide is common in many families, disulphide bond mutations are quite prevalent. Interestingly, we note that there is no clear relationship between sequence identity between two homologous proteins and disulphide bond conservation. Our analysis on structural features at the sites where cysteines forming disulphide in one homologue are replaced by non-Cys residues show that the elimination of a disulphide in a homologue need not always result in stabilizing interactions between equivalent residues. CONCLUSION: We observe that in the homologous proteins, disulphide bonds are conserved only to a modest extent. Very interestingly, we note that extent of conservation of disulphide in homologous proteins is unrelated to the overall sequence identity between homologues. The non-conserved disulphides are often associated with variable structural features that were recruited to be associated with differentiation or specialisation of protein function.


Asunto(s)
Disulfuros/química , Proteínas/química , Homología Estructural de Proteína , Secuencia Conservada , Cistina/química , Bases de Datos de Proteínas , Conformación Proteica , Estructura Terciaria de Proteína , Alineación de Secuencia , Solventes/química
8.
Proteins ; 67(2): 255-61, 2007 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-17285632

RESUMEN

Disulphide bonds in proteins are known to play diverse roles ranging from folding to structure to function. Thorough knowledge of the conservation status and structural state of the disulphide bonds will help in understanding of the differences in homologous proteins. Here we present a database for the analysis of conservation and conformation of disulphide bonds in SCOP structural families. This database has a wide range of applications including mapping of disulphide bond mutation patterns, identification of disulphide bonds important for folding and stabilization, modeling of protein tertiary structures and in protein engineering. The database can be accessed at: http://bioinformatics.univ-reunion.fr/analycys/.


Asunto(s)
Bases de Datos de Proteínas , Disulfuros/química , Proteínas/química , Homología Estructural de Proteína , Secuencia Conservada , Internet , Mutación , Conformación Proteica , Proteínas/fisiología
9.
J Phys Chem B ; 117(42): 13226-34, 2013 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-23734591

RESUMEN

The nuclear factor of activated T cells 5 (NFAT5 or TonEBP) is a Rel family transcriptional activator and is activated by hypertonic conditions. Several studies point to a possible connection between nuclear translocation and DNA binding; however, the mechanism of NFAT5 nuclear translocation and the effect of DNA binding on retaining NFAT5 in the nucleus are largely unknown. Recent experiments showed that different mutations introduced in the DNA-binding loop and dimerization interface were important for DNA binding and some of them decreased the nuclear-cytoplasm ratio of NFAT5. To understand the mechanisms of these mutations, we model their effect on protein dynamics and DNA binding. We show that the NFAT5 complex without DNA is much more flexible than the complex with DNA. Moreover, DNA binding considerably stabilizes the overall dimeric complex and the NFAT5 dimer is only marginally stable in the absence of DNA. Two sets of NFAT5 mutations from the same DNA-binding loop are found to have different mechanisms of specific and nonspecific binding to DNA. The R217A/E223A/R226A (R293A/E299A/R302A using isoform c numbering) mutant is characterized by significantly compromised binding to DNA and higher complex flexibility. On the contrary, the T222D (T298D in isoform c) mutation, a potential phosphomimetic mutation, makes the overall complex more rigid and does not significantly affect the DNA binding. Therefore, the reduced nuclear-cytoplasm ratio of NFAT5 can be attributed to reduced binding to DNA for the triple mutant, while the T222D mutant suggests an additional mechanism at work.


Asunto(s)
ADN/metabolismo , Factores de Transcripción/metabolismo , Sitios de Unión , Humanos , Simulación de Dinámica Molecular , Mutación , Análisis de Componente Principal , Unión Proteica , Estructura Terciaria de Proteína , Programas Informáticos , Factores de Transcripción/química , Factores de Transcripción/genética
10.
PLoS One ; 7(1): e28896, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22303436

RESUMEN

The coverage and reliability of protein-protein interactions determined by high-throughput experiments still needs to be improved, especially for higher organisms, therefore the question persists, how interactions can be verified and predicted by computational approaches using available data on protein structural complexes. Recently we developed an approach called IBIS (Inferred Biomolecular Interaction Server) to predict and annotate protein-protein binding sites and interaction partners, which is based on the assumption that the structural location and sequence patterns of protein-protein binding sites are conserved between close homologs. In this study first we confirmed high accuracy of our method and found that its accuracy depends critically on the usage of all available data on structures of homologous complexes, compared to the approaches where only a non-redundant set of complexes is employed. Second we showed that there exists a trade-off between specificity and sensitivity if we employ in the prediction only evolutionarily conserved binding site clusters or clusters supported by only one observation (singletons). Finally we addressed the question of identifying the biologically relevant interactions using the homology inference approach and demonstrated that a large majority of crystal packing interactions can be correctly identified and filtered by our algorithm. At the same time, about half of biological interfaces that are not present in the protein crystallographic asymmetric unit can be reconstructed by IBIS from homologous complexes without the prior knowledge of crystal parameters of the query protein.


Asunto(s)
Secuencia Conservada , Mapeo de Interacción de Proteínas , Homología de Secuencia de Aminoácido , Algoritmos , Secuencia de Aminoácidos , Sitios de Unión , Clostridium/enzimología , Análisis por Conglomerados , Cristalografía por Rayos X , Bases de Datos de Proteínas , Datos de Secuencia Molecular , Molibdoferredoxina/química , Molibdoferredoxina/metabolismo , Nitrogenasa/metabolismo , Unión Proteica , Estructura Secundaria de Proteína , Proteínas/química , Proteínas/metabolismo , Reproducibilidad de los Resultados , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA