Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
ACS Chem Biol ; 10(11): 2624-32, 2015 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-26352092

RESUMEN

The estrogen receptors (ERs) feature, next to their transcriptional role, important nongenomic signaling actions, with emerging clinical relevance. The Src Homology 2 (SH2) domain mediated interaction between cSrc kinase and ER plays a key role in this; however the molecular determinants of this interaction have not been elucidated. Here, we used phosphorylated ER peptide and semisynthetic protein constructs in a combined biochemical and structural study to, for the first time, provide a quantitative and structural characterization of the cSrc SH2-ER interaction. Fluorescence polarization experiments delineated the SH2 binding motif in the ER sequence. Chemical shift perturbation analysis by nuclear magnetic resonance (NMR) together with molecular dynamics (MD) simulations allowed us to put forward a 3D model of the ER-SH2 interaction. The structural basis of this protein-protein interaction has been compared with that of the high affinity SH2 binding sequence GpYEEI. The ER features a different binding mode from that of the "two-pronged plug two-hole socket" model in the so-called specificity determining region. This alternative binding mode is modulated via the folding of ER helix 12, a structural element directly C-terminal of the key phosphorylated tyrosine. The present findings provide novel molecular entries for understanding nongenomic ER signaling and targeting the corresponding disease states.


Asunto(s)
Modelos Biológicos , Receptores de Estrógenos/metabolismo , Familia-src Quinasas/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Femenino , Fluorescencia , Humanos , Espectroscopía de Resonancia Magnética , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Péptidos/química , Péptidos/genética , Unión Proteica , Pliegue de Proteína , Receptores de Estrógenos/química , Dominios Homologos src , Familia-src Quinasas/química
2.
ACS Chem Biol ; 10(2): 475-84, 2015 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-25386784

RESUMEN

The estrogen receptor (ER) is the number one target for the treatment of endocrine responsive breast cancer and remains a highly attractive target for new drug development. Despite considerable efforts to understand the role of ER post-translational modifications (PTMs), the complexity of these modifications and their impact, at the molecular level, are poorly understood. Using a chemical biology approach, fundamentally rooted in an efficient protein semisynthesis of tyrosine phosphorylated ER constructs, the complex role of the ER tyrosine phosphorylation is addressed here for the first time on a molecular level. The semisynthetic approach allows for the site-specific introduction of PTMs as well as biophysical probes. A combination of biophysical techniques, including NMR, with molecular dynamics studies reveals the role of the phosphorylation of the clinically relevant tyrosine 537 (Y537) in ERα and the analogous tyrosine (Y488) in ERß. Phosphorylation has important effects on the dynamics of the ER Helix 12, which is centrally involved in receptor activity regulation, and on its interplay with ligand and cofactor binding, but with differential regulatory effects of the analogous PTMs on the two ER subtypes. Combined, the results bring forward a novel molecular model of a phosphorylation-induced subtype specific ER modulatory mechanism, alternative to the widely accepted ligand-induced activation mechanism.


Asunto(s)
Coactivadores de Receptor Nuclear/metabolismo , Receptores de Estrógenos/metabolismo , Sitios de Unión , Modelos Moleculares , Coactivadores de Receptor Nuclear/química , Fosforilación , Unión Proteica , Conformación Proteica , Estructura Terciaria de Proteína , Receptores de Estrógenos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA