Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Neurobiol Dis ; 147: 105147, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33189882

RESUMEN

Oxytocin (OT) has broad effects in the brain and plays an important role in cognitive, social, and neuroendocrine function. OT has also been identified as potentially therapeutic in neuropsychiatric disorders such as autism and depression, which are often comorbid with epilepsy, raising the possibility that it might confer protection against the behavioral and seizure phenotypes in epilepsy. Dravet syndrome (DS) is an early-life encephalopathy associated with prolonged and recurrent early-life febrile seizures (FSs), treatment-resistant afebrile epilepsy, and cognitive and behavioral deficits. De novo loss-of-function mutations in the voltage-gated sodium channel SCN1A are the main cause of DS, while genetic epilepsy with febrile seizures plus (GEFS+), also characterized by early-life FSs and afebrile epilepsy, is typically caused by inherited mutations that alter the biophysical properties of SCN1A. Despite the wide range of available antiepileptic drugs, many patients with SCN1A mutations do not achieve adequate seizure control or the amelioration of associated behavioral comorbidities. In the current study, we demonstrate that nanoparticle encapsulation of OT conferred robust and sustained protection against induced seizures and restored more normal social behavior in a mouse model of Scn1a-derived epilepsy. These results demonstrate the ability of a nanotechnology formulation to significantly enhance the efficacy of OT. This approach will provide a general strategy to enhance the therapeutic potential of additional neuropeptides in epilepsy and other neurological disorders.


Asunto(s)
Conducta Animal/efectos de los fármacos , Canal de Sodio Activado por Voltaje NAV1.1/genética , Oxitocina/administración & dosificación , Convulsiones , Animales , Epilepsias Mioclónicas/genética , Masculino , Ratones , Nanopartículas , Convulsiones/genética , Conducta Social
2.
Front Pharmacol ; 12: 748415, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34867351

RESUMEN

Numerous SCN8A mutations have been identified, of which, the majority are de novo missense variants. Most mutations result in epileptic encephalopathy; however, some are associated with less severe phenotypes. Mouse models generated by knock-in of human missense SCN8A mutations exhibit seizures and a range of behavioral abnormalities. To date, there are only a few Scn8a mouse models with in-frame deletions or insertions, and notably, none of these mouse lines exhibit increased seizure susceptibility. In the current study, we report the generation and characterization of two Scn8a mouse models (ΔIRL/+ and ΔVIR/+) carrying overlapping in-frame deletions within the voltage sensor of domain 4 (DIVS4). Both mouse lines show increased seizure susceptibility and infrequent spontaneous seizures. We also describe two unrelated patients with the same in-frame SCN8A deletion in the DIV S5-S6 pore region, highlighting the clinical relevance of this class of mutations.

3.
Neuropsychopharmacology ; 46(11): 2011-2020, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33658654

RESUMEN

Patients with SCN8A epileptic encephalopathy exhibit a range of clinical features, including multiple seizure types, movement disorders, and behavioral abnormalities, such as developmental delay, mild-to-severe intellectual disability, and autism. Recently, the de novo heterozygous SCN8A R1620L mutation was identified in an individual with autism, intellectual disability, and behavioral seizures without accompanying electrographic seizure activity. To date, the effects of SCN8A mutations that are primarily associated with behavioral abnormalities have not been studied in a mouse model. To better understand the phenotypic and functional consequences of the R1620L mutation, we used CRISPR/Cas9 technology to generate mice expressing the corresponding SCN8A amino acid substitution. Homozygous mutants exhibit tremors and a maximum lifespan of 22 days, while heterozygous mutants (RL/+) exhibit autistic-like behaviors, such as hyperactivity and learning and social deficits, increased seizure susceptibility, and spontaneous seizures. Current clamp analyses revealed a reduced threshold for firing action potentials in heterozygous CA3 pyramidal neurons and reduced firing frequency, suggesting that the R1620L mutation has both gain- and loss-of-function effects. In vivo calcium imaging using miniscopes in freely moving RL/+ mutants showed hyperexcitability of cortical excitatory neurons that is likely to increase seizure susceptibility. Finally, we found that oxcarbazepine and Huperzine A, a sodium channel blocker and reversible acetylcholinesterase inhibitor, respectively, were capable of conferring robust protection against induced seizures in RL/+ mutants. This mouse line will provide the opportunity to better understand the range of clinical phenotypes associated with SCN8A mutations and to develop new therapeutic approaches.


Asunto(s)
Trastorno Autístico , Epilepsia , Animales , Humanos , Ratones , Mutación/genética , Canal de Sodio Activado por Voltaje NAV1.6/genética , Neuronas , Convulsiones/genética
4.
Genes Brain Behav ; 19(4): e12612, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31605437

RESUMEN

Mutations in the voltage-gated sodium channel gene SCN8A cause a broad range of human diseases, including epilepsy, intellectual disability, and ataxia. Here we describe three mouse lines on the C57BL/6J background with novel, overlapping mutations in the Scn8a DIIS4 voltage sensor: an in-frame 9 bp deletion (Δ9), an in-frame 3 bp insertion (∇3) and a 35 bp deletion that results in a frameshift and the generation of a null allele (Δ35). Scn8a Δ9/+ and Scn8a ∇3/+ heterozygous mutants display subtle motor deficits, reduced acoustic startle response, and are resistant to induced seizures, suggesting that these mutations reduce activity of the Scn8a channel protein, Nav 1.6. Heterozygous Scn8a Δ35/+ mutants show no alterations in motor function or acoustic startle response, but are resistant to induced seizures. Homozygous mutants from each line exhibit premature lethality and severe motor impairments, ranging from uncoordinated gait with tremor (Δ9 and ∇3) to loss of hindlimb control (Δ35). Scn8a Δ9/Δ9 and Scn8a ∇3/∇3 homozygous mutants also exhibit impaired nerve conduction velocity, while normal nerve conduction was observed in Scn8a Δ35/Δ35 homozygous mice. Our results suggest that hypomorphic mutations that reduce Nav 1.6 activity will likely result in different clinical phenotypes compared to null alleles. These three mouse lines represent a valuable opportunity to examine the phenotypic impacts of hypomorphic and null Scn8a mutations without the confound of strain-specific differences.


Asunto(s)
Movimiento , Mutación , Canal de Sodio Activado por Voltaje NAV1.6/genética , Potenciales de Acción , Animales , Homocigoto , Masculino , Ratones , Ratones Endogámicos C57BL , Canal de Sodio Activado por Voltaje NAV1.6/química , Fenotipo , Dominios Proteicos
5.
Ann Clin Transl Neurol ; 6(8): 1566-1571, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31402621

RESUMEN

De novo loss-of-function mutations in SCN1A are the main cause of Dravet syndrome, a catastrophic encephalopathy characterized by recurrent early-life febrile seizures, a number of other afebrile seizure types that are often refractory to treatment, and behavioral abnormalities including social deficits, motor dysfunction, and cognitive impairment. We previously demonstrated that the reversible acetylcholinesterase inhibitor, Huperzine A, increases seizure resistance in Scn1a mutants. In the present study, we evaluated the therapeutic potential of donepezil, a reversible acetylcholinesterase inhibitor approved by the Food and Drug Administration, in a mouse model of Dravet syndrome (Scn1a+/- ). We found that donepezil conferred robust protection against induced seizures in Scn1a+/- mutants.


Asunto(s)
Donepezilo/uso terapéutico , Epilepsias Mioclónicas/complicaciones , Epilepsias Mioclónicas/genética , Convulsiones/tratamiento farmacológico , Animales , Modelos Animales de Enfermedad , Epilepsias Mioclónicas/fisiopatología , Masculino , Ratones , Mutación , Canal de Sodio Activado por Voltaje NAV1.1/genética , Receptores de GABA-A , Receptores Muscarínicos , Convulsiones/inducido químicamente , Convulsiones/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA