Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Mol Cell ; 76(3): 473-484.e7, 2019 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-31494034

RESUMEN

Enhancers can regulate the promoters of their target genes over very large genomic distances. It is widely assumed that mechanisms of enhancer action involve the reorganization of three-dimensional chromatin architecture, but this is poorly understood. The predominant model involves physical enhancer-promoter interaction by looping out the intervening chromatin. However, studying the enhancer-driven activation of the Sonic hedgehog gene (Shh), we have identified a change in chromosome conformation that is incompatible with this simple looping model. Using super-resolution 3D-FISH and chromosome conformation capture, we observe a decreased spatial proximity between Shh and its enhancers during the differentiation of embryonic stem cells to neural progenitors. We show that this can be recapitulated by synthetic enhancer activation, is impeded by chromatin-bound proteins located between the enhancer and the promoter, and appears to involve the catalytic activity of poly (ADP-ribose) polymerase. Our data suggest that models of enhancer-promoter communication need to encompass chromatin conformations other than looping.


Asunto(s)
Ensamble y Desensamble de Cromatina , Elementos de Facilitación Genéticos , Proteínas Hedgehog/metabolismo , Células Madre Embrionarias de Ratones/metabolismo , Neurogénesis , Neuronas/metabolismo , Regiones Promotoras Genéticas , Activación Transcripcional , Animales , Línea Celular , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/genética , Ratones , Modelos Genéticos , Neurogénesis/genética , Conformación de Ácido Nucleico , Poli(ADP-Ribosa) Polimerasa-1/genética , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo
2.
J Cell Sci ; 136(19)2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37655670

RESUMEN

Genomes comprise a large fraction of repetitive sequences folded into constitutive heterochromatin, which protect genome integrity and cell identity. De novo formation of heterochromatin during preimplantation development is an essential step for preserving the ground-state of pluripotency and the self-renewal capacity of embryonic stem cells (ESCs). However, the molecular mechanisms responsible for the remodeling of constitutive heterochromatin are largely unknown. Here, we identify that DAXX, an H3.3 chaperone essential for the maintenance of mouse ESCs in the ground state, accumulates in pericentromeric regions independently of DNA methylation. DAXX recruits PML and SETDB1 to promote the formation of heterochromatin, forming foci that are hallmarks of ground-state ESCs. In the absence of DAXX or PML, the three-dimensional (3D) architecture and physical properties of pericentric and peripheral heterochromatin are disrupted, resulting in de-repression of major satellite DNA, transposable elements and genes associated with the nuclear lamina. Using epigenome editing tools, we observe that H3.3, and specifically H3.3K9 modification, directly contribute to maintaining pericentromeric chromatin conformation. Altogether, our data reveal that DAXX is crucial for the maintenance and 3D organization of the heterochromatin compartment and protects ESC viability.


Asunto(s)
Heterocromatina , Histonas , Animales , Ratones , Histonas/genética , Heterocromatina/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Cromatina , Células Madre Embrionarias/metabolismo
3.
Nucleic Acids Res ; 51(19): 10292-10308, 2023 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-37650637

RESUMEN

Epigenetic mechanisms are essential to establish and safeguard cellular identities in mammals. They dynamically regulate the expression of genes, transposable elements and higher-order chromatin structures. Consequently, these chromatin marks are indispensable for mammalian development and alterations often lead to disease, such as cancer. Bivalent promoters are especially important during differentiation and development. Here we used a genetic screen to identify new regulators of a bivalent repressed gene. We identify BEND3 as a regulator of hundreds of bivalent promoters, some of which it represses, and some of which it activates. We show that BEND3 is recruited to a CpG-containg consensus site that is present in multiple copies in many bivalent promoters. Besides having direct effect on the promoters it binds, the loss of BEND3 leads to genome-wide gains of DNA methylation, which are especially marked at regions normally protected by the TET enzymes. DNA hydroxymethylation is reduced in Bend3 mutant cells, possibly as consequence of altered gene expression leading to diminished alpha-ketoglutarate production, thus lowering TET activity. Our results clarify the direct and indirect roles of an important chromatin regulator, BEND3, and, more broadly, they shed light on the regulation of bivalent promoters.


Asunto(s)
Metilación de ADN , Proteínas Represoras , Animales , Humanos , Cromatina/genética , Metilación de ADN/genética , Epigénesis Genética , Expresión Génica , Mamíferos/genética , Neoplasias/genética , Proteínas Represoras/metabolismo
4.
PLoS Comput Biol ; 12(6): e1004987, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27295501

RESUMEN

Characterizing the link between small-scale chromatin structure and large-scale chromosome folding during interphase is a prerequisite for understanding transcription. Yet, this link remains poorly investigated. Here, we introduce a simple biophysical model where interphase chromosomes are described in terms of the folding of chromatin sequences composed of alternating blocks of fibers with different thicknesses and flexibilities, and we use it to study the influence of sequence disorder on chromosome behaviors in space and time. By employing extensive computer simulations, we thus demonstrate that chromosomes undergo noticeable conformational changes only on length-scales smaller than 105 basepairs and time-scales shorter than a few seconds, and we suggest there might exist effective upper bounds to the detection of chromosome reorganization in eukaryotes. We prove the relevance of our framework by modeling recent experimental FISH data on murine chromosomes.


Asunto(s)
Fenómenos Biofísicos/fisiología , Cromatina/química , Cromatina/metabolismo , Cromosomas/química , Cromosomas/metabolismo , Simulación de Dinámica Molecular , Animales , Modelos Químicos , Conformación de Ácido Nucleico
5.
Med Sci (Paris) ; 40(2): 147-153, 2024 Feb.
Artículo en Francés | MEDLINE | ID: mdl-38411422

RESUMEN

Totipotency is the ability of a cell to generate a whole organism, a property that characterizes the first embryonic cells, such as the zygote and the blastomeres. This review provides a retrospective on the progress made in the last decade in the study of totipotency, especially with the discovery of mouse ES cells expressing markers of the 2-cell stage (2C-like cells). This model has greatly contributed to a better understanding of the molecular mechanisms involved in totipotency (pioneer factors, epigenetic regulation, splicing, nuclear maturation). 2C-like cells have also paved the way for the development of new cellular models of human totipotency.


Title: Comprendre la totipotence embryonnaire à partir des cellules 2C-like. Abstract: La totipotence est la capacité d'une cellule à générer un organisme entier, une propriété qui caractérise les premières cellules embryonnaires, comme le zygote et les blastomères. Dans cette revue, nous proposons une rétrospective des avancées réalisées au cours de la dernière décennie concernant l'étude de la totipotence avec, notamment, la découverte des cellules ES murines exprimant des marqueurs du stade 2-cellules (2CLC). Ce modèle a considérablement contribué à la meilleure compréhension des mécanismes moléculaires impliqués dans la totipotence (facteurs pionniers, régulation épigénétique, épissage, maturation nucléaire). Les cellules 2CLC ont aussi ouvert la voie au développement de nouveaux modèles cellulaires de totipotence humaine.


Asunto(s)
Células Madre Embrionarias , Epigénesis Genética , Humanos , Animales , Ratones , Estudios Retrospectivos , Empalme del ARN , Cigoto
6.
Proc Natl Acad Sci U S A ; 107(5): 2025-30, 2010 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-20080699

RESUMEN

Physical interactions between distinct chromosomal genomic loci are important for genomic functions including recombination and gene expression, but the mechanisms by which these interactions occur remain obscure. Using telomeric association as a model system, we analyzed here the in vivo organization of chromosome ends of haploid yeast cells during interphase. We separately labeled most of the 32 subtelomeres and analyzed their positions both in nuclear space and relative to three representative reference subtelomeres by high-throughput 3D microscopy and image processing. We show that subtelomeres are positioned nonrandomly at the nuclear periphery, depending on the genomic size of their chromosome arm, centromere attachment to the microtubule organizing center (spindle pole body, SPB), and the volume of the nucleolus. The distance of subtelomeres to the SPB increases consistently with chromosome arm length up to approximately 300 kb; for larger arms the influence of chromosome arm length is weaker, but the effect of the nucleolar volume is stronger. Distances between pairs of subtelomeres also exhibit arm-length dependence and suggest, together with dynamic tracking experiments, that potential associations between subtelomeres are unexpectedly infrequent and transient. Our results suggest that interactions between subtelomeres are nonspecific and instead governed by physical constraints, including chromosome structure, attachment to the SPB, and nuclear crowding.


Asunto(s)
Cromosomas Fúngicos/genética , Saccharomyces cerevisiae/genética , Telómero/genética , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , Nucléolo Celular/ultraestructura , Núcleo Celular/genética , Núcleo Celular/metabolismo , Núcleo Celular/ultraestructura , Cromosomas Fúngicos/metabolismo , Cromosomas Fúngicos/ultraestructura , Imagenología Tridimensional , Modelos Genéticos , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestructura , Telómero/metabolismo , Telómero/ultraestructura
7.
Nat Commun ; 13(1): 5726, 2022 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-36175410

RESUMEN

Membrane-less organelles are condensates formed by phase separation whose functions often remain enigmatic. Upon oxidative stress, PML scaffolds Nuclear Bodies (NBs) to regulate senescence or metabolic adaptation. PML NBs recruit many partner proteins, but the actual biochemical mechanism underlying their pleiotropic functions remains elusive. Similarly, PML role in embryonic stem cell (ESC) and retro-element biology is unsettled. Here we demonstrate that PML is essential for oxidative stress-driven partner SUMO2/3 conjugation in mouse ESCs (mESCs) or leukemia, a process often followed by their poly-ubiquitination and degradation. Functionally, PML is required for stress responses in mESCs. Differential proteomics unravel the KAP1 complex as a PML NB-dependent SUMO2-target in arsenic-treated APL mice or mESCs. PML-driven KAP1 sumoylation enables activation of this key epigenetic repressor implicated in retro-element silencing. Accordingly, Pml-/- mESCs re-express transposable elements and display 2-Cell-Like features, the latter enforced by PML-controlled SUMO2-conjugation of DPPA2. Thus, PML orchestrates mESC state by coordinating SUMO2-conjugation of different transcriptional regulators, raising new hypotheses about PML roles in cancer.


Asunto(s)
Arsénico , Sumoilación , Animales , Elementos Transponibles de ADN , Células Madre Embrionarias , Ratones , Cuerpos Nucleares , Factores de Transcripción
8.
J Cell Biol ; 172(2): 189-99, 2006 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-16418532

RESUMEN

In the yeast Saccharomyces cerevisiae that lacks lamins, the nuclear pore complex (NPC) has been proposed to serve a role in chromatin organization. Here, using fluorescence microscopy in living cells, we show that nuclear pore proteins of the Nup84 core complex, Nup84p, Nup145Cp, Nup120p, and Nup133p, serve to anchor telomere XI-L at the nuclear periphery. The integrity of this complex is shown to be required for repression of a URA3 gene inserted in the subtelomeric region of this chromosome end. Furthermore, altering the integrity of this complex decreases the efficiency of repair of a DNA double-strand break (DSB) only when it is generated in the subtelomeric region, even though the repair machinery is functional. These effects are specific to the Nup84 complex. Our observations thus confirm and extend the role played by the NPC, through the Nup84 complex, in the functional organization of chromatin. They also indicate that anchoring of telomeres is essential for efficient repair of DSBs occurring therein and is important for preserving genome integrity.


Asunto(s)
Núcleo Celular/metabolismo , Reparación del ADN , ADN/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Telómero/metabolismo , Secuencia de Bases , Cromosomas Fúngicos , Daño del ADN , Silenciador del Gen , Datos de Secuencia Molecular , Poro Nuclear/metabolismo , Proteínas de Complejo Poro Nuclear/genética , Proteínas de Complejo Poro Nuclear/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Saccharomyces cerevisiae/citología , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
9.
Brief Funct Genomics ; 19(2): 101-110, 2020 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-32048721

RESUMEN

The spatial organization of the genome contributes to essential functions such as transcription and chromosome integrity maintenance. The principles governing nuclear compartmentalization have been the focus of considerable research over the last decade. In these studies, the genome-nuclear structure interactions emerged as a main driver of this particular 3D genome organization. In this review, we describe the interactions between the genome and four major landmarks of the nucleus: the nuclear lamina, the nuclear pores, the pericentromeric heterochromatin and the nucleolus. We present the recent studies that identify sequences bound to these different locations and address the tethering mechanisms. We give an overview of the relevance of this organization in development and disease. Finally, we discuss the dynamic aspects and self-organizing properties that allow this complex architecture to be inherited.


Asunto(s)
Núcleo Celular/metabolismo , Lámina Nuclear/metabolismo , Poro Nuclear/metabolismo , Animales , Humanos
11.
Science ; 346(6214): 1238-42, 2014 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-25477464

RESUMEN

During differentiation, thousands of genes are repositioned toward or away from the nuclear envelope. These movements correlate with changes in transcription and replication timing. Using synthetic (TALE) transcription factors, we found that transcriptional activation of endogenous genes by a viral trans-activator is sufficient to induce gene repositioning toward the nuclear interior in embryonic stem cells. However, gene relocation was also induced by recruitment of an acidic peptide that decondenses chromatin without affecting transcription, indicating that nuclear reorganization is driven by chromatin remodeling rather than transcription. We identified an epigenetic inheritance of chromatin decondensation that maintained central nuclear positioning through mitosis even after the TALE transcription factor was lost. Our results also demonstrate that transcriptional activation, but not chromatin decondensation, is sufficient to change replication timing.


Asunto(s)
Diferenciación Celular/genética , Núcleo Celular/genética , Ensamble y Desensamble de Cromatina , Cromatina/metabolismo , Células Madre Embrionarias/citología , Epigénesis Genética , Transactivadores/metabolismo , Activación Transcripcional , Animales , Línea Celular , Núcleo Celular/metabolismo , Núcleo Celular/ultraestructura , Replicación del ADN , Células Madre Embrionarias/metabolismo , Ratones , Membrana Nuclear/genética , Membrana Nuclear/metabolismo , Membrana Nuclear/ultraestructura
12.
J Biol Chem ; 282(10): 7690-9, 2007 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-17178720

RESUMEN

Fnr is a regulator that controls the expression of a variety of genes in response to oxygen limitation in bacteria. To assess the role of Fnr in photosynthesis in Rubrivivax gelatinosus, a strain carrying a null mutation in fnrL was constructed. It was unable to grow anaerobically in the light, but, intriguingly, it was able to produce photosynthetic complexes under high oxygenation conditions. The mutant lacked all c-type cytochromes normally detectable in microaerobically-grown wild type cells and accumulated coproporphyrin III. These data suggested that the pleiotropic phenotype observed in FNR is primarily due to the control at the level of the HemN oxygen-independent coproporphyrinogen III dehydrogenase. hemN expression in trans partially suppressed the FNR phenotype, as it rescued heme and cytochrome syntheses. Nevertheless, these cells were photosynthetically deficient, and pigment analyses showed that they were blocked at the level of Mg(2+)-protoporphyrin monomethyl ester. Expression of both hemN and bchE in the FNR mutant restored synthesis of Mg(2+)-protochlorophyllide. We, therefore, conclude that FnrL controls respiration by regulating hemN expression and controls photosynthesis by regulating both hemN and bchE expression. A comprehensive picture of the control points of microaerobic respiration and photosynthesis by FnrL is provided, and the prominent role of this factor in activating alternative gene programs after reduction of oxygen tension in facultative aerobes is discussed.


Asunto(s)
Proteínas Bacterianas/fisiología , Betaproteobacteria/metabolismo , Consumo de Oxígeno , Fotosíntesis , Tetrapirroles/metabolismo , Secuencia de Bases , Betaproteobacteria/crecimiento & desarrollo , Clorofila/biosíntesis , Complejo IV de Transporte de Electrones/biosíntesis , Regulación Bacteriana de la Expresión Génica , Complejos de Proteína Captadores de Luz/biosíntesis , Datos de Secuencia Molecular , Transactivadores/fisiología
13.
Mol Biol Evol ; 22(4): 856-73, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15616141

RESUMEN

The recent release of sequences of several unexplored yeast species that cover an evolutionary range comparable to the entire phylum of chordates offers us a unique opportunity to investigate how genes involved in adaptation have been shaped by evolution. We have examined how three different sets of genes, all related to adaptative processes at the genomic level, have evolved in hemiascomycetes: (1) the mating-type genes that govern sexuality, (2) the silencing genes that are connected to regulation of mating-type cassettes and to telomere position effect, and (3) the gene families found repeated in subtelomeric regions. We report new combinations of mating-type genes and cassettes in hemiascomycetous species; we show that silencing proteins diverge rapidly. We have also found that in all species studied, subtelomeric gene families exist and are specific to each species.


Asunto(s)
Ascomicetos/genética , Evolución Molecular , Silenciador del Gen , Genómica , Telómero , Secuencia de Aminoácidos , Ascomicetos/fisiología , Secuencia de Bases , ADN de Hongos , Datos de Secuencia Molecular , Homología de Secuencia de Aminoácido , Homología de Secuencia de Ácido Nucleico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA