Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 279
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Ann Surg ; 278(1): e137-e146, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35837955

RESUMEN

OBJECTIVE: The aim of this study was to investigate (a) the effects of the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway inhibitor (baricitinib) on the multiple organ dysfunction syndrome (MODS) in a rat model of hemorrhagic shock (HS) and (b) whether treatment with baricitinib attenuates the activation of JAK/STAT, NF-κB, and NLRP3 caused by HS. BACKGROUND: Posttraumatic MODS, which is in part due to excessive systemic inflammation, is associated with high morbidity and mortality. The JAK/STAT pathway is a regulator of numerous growth factor and cytokine receptors and, hence, is considered a potential master regulator of many inflammatory signaling processes. However, its role in trauma-hemorrhage is unknown. METHODS: An acute HS rat model was performed to determine the effect of baricitinib on MODS. The activation of JAK/STAT, NF-κB, and NLRP3 pathways were analyzed by western blotting in the kidney and liver. RESULTS: We demonstrate here for the first time that treatment with baricitinib (during resuscitation following severe hemorrhage) attenuates the organ injury and dysfunction and the activation of JAK/STAT, NF-κB, and NLRP3 pathways caused by HS in the rat. CONCLUSIONS: Our results point to a role of the JAK/STAT pathway in the pathophysiology of the organ injury and dysfunction caused by trauma/hemorrhage and indicate that JAK inhibitors, such as baricitinib, may be repurposed for the treatment of the MODS after trauma and/or hemorrhage.


Asunto(s)
Choque Hemorrágico , Transducción de Señal , Ratas , Animales , FN-kappa B/metabolismo , FN-kappa B/farmacología , Quinasas Janus/metabolismo , Quinasas Janus/farmacología , Choque Hemorrágico/complicaciones , Choque Hemorrágico/tratamiento farmacológico , Insuficiencia Multiorgánica/etiología , Insuficiencia Multiorgánica/prevención & control , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Factores de Transcripción STAT/metabolismo , Factores de Transcripción STAT/farmacología
2.
Ann Surg ; 277(3): e624-e633, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35129479

RESUMEN

OBJECTIVE: The aim of this study was to investigate (a) the potential of the Bruton's tyrosine kinase (BTK) inhibitors acalabrutinib and fenebrutinib to reduce multiple organ dysfunction syndrome (MODS) in acute (short-term and long-term follow-up) hemorrhagic shock (HS) rat models and (b) whether treatment with either acalabrutinib or fenebrutinib attenuates BTK, NF-κB and NLRP3 activation in HS. BACKGROUND: The MODS caused by an excessive systemic inflammatory response following trauma is associated with a high morbidity and mortality. The protein BTK is known to play a role in the activation of the NLRP3 inflammasome, which is a key component of the innate inflammatory response. However, its role in trauma-hemorrhage is unknown. METHODS: Acute HS rat models were performed to determine the influence of acalabrutinib or fenebrutinib on MODS. The activation of BTK, NF-κB and NLRP3 pathways were analyzed by western blot in the kidney. RESULTS: We demonstrated that (a) HS caused organ injury and/or dysfunction and hypotension (post-resuscitation) in rats, while (b) treatment of HS-rats with either acalabrutinib or fenebrutinib attenuated the organ injury and dysfunction in acute HS models and (c) reduced the activation of BTK, NF- kB and NLRP3 pathways in the kidney. CONCLUSION: Our results point to a role of BTK in the pathophysiology of organ injury and dysfunction caused by trauma/hemorrhage and indicate that BTK inhibitors may be repurposed as a potential therapeutic approach for MODS after trauma and/or hemorrhage.


Asunto(s)
Choque Hemorrágico , Animales , Ratas , Choque Hemorrágico/complicaciones , Choque Hemorrágico/tratamiento farmacológico , Agammaglobulinemia Tirosina Quinasa , FN-kappa B , Insuficiencia Multiorgánica/etiología , Insuficiencia Multiorgánica/prevención & control , Proteína con Dominio Pirina 3 de la Familia NLR
3.
FASEB J ; 36(1): e22107, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34939700

RESUMEN

Mounting evidence has linked the metabolic disease to neurovascular disorders and cognitive decline. Using a murine model of a high-fat high-sugar diet mimicking obesity-induced type 2 diabetes mellitus (T2DM) in humans, we show that pro-inflammatory mediators and altered immune responses damage the blood-brain barrier (BBB) structure, triggering a proinflammatory metabolic phenotype. We find that disruption to tight junctions and basal lamina due to loss of control in the production of matrix metalloproteinases (MMPs) and their inhibitors (TIMPs) causes BBB impairment. Together the disruption to the structural and functional integrity of the BBB results in enhanced transmigration of leukocytes across the BBB that could contribute to an initiation of a neuroinflammatory response through activation of microglia. Using a humanized in vitro model of the BBB and T2DM patient post-mortem brains, we show the translatable applicability of our results. We find a leaky BBB phenotype in T2DM patients can be attributed to a loss of junctional proteins through changes in inflammatory mediators and MMP/TIMP levels, resulting in increased leukocyte extravasation into the brain parenchyma. We further investigated therapeutic avenues to reduce and restore the BBB damage caused by HFHS-feeding. Pharmacological treatment with recombinant annexin A1 (hrANXA1) or reversion from a high-fat high-sugar diet to a control chow diet (dietary intervention), attenuated T2DM development, reduced inflammation, and restored BBB integrity in the animals. Given the rising incidence of diabetes worldwide, understanding metabolic-disease-associated brain microvessel damage is vital and the proposed therapeutic avenues could help alleviate the burden of these diseases.


Asunto(s)
Barrera Hematoencefálica/inmunología , Colagenasas/inmunología , Diabetes Mellitus Experimental/inmunología , Diabetes Mellitus Tipo 2/inmunología , Inhibidores Tisulares de Metaloproteinasas/inmunología , Animales , Anexina A1/farmacología , Barrera Hematoencefálica/patología , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/patología , Humanos , Masculino , Ratones , Proteínas Recombinantes/farmacología
4.
Int J Mol Sci ; 24(8)2023 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-37108119

RESUMEN

Sporadic Alzheimer's disease (sAD) represents a serious and growing worldwide economic and healthcare burden. Almost 95% of current AD patients are associated with sAD as opposed to patients presenting with well-characterized genetic mutations that lead to AD predisposition, i.e., familial AD (fAD). Presently, the use of transgenic (Tg) animals overexpressing human versions of these causative fAD genes represents the dominant research model for AD therapeutic development. As significant differences in etiology exist between sAD and fAD, it is perhaps more appropriate to develop novel, more sAD-reminiscent experimental models that would expedite the discovery of effective therapies for the majority of AD patients. Here we present the oDGal mouse model, a novel model of sAD that displays a range of AD-like pathologies as well as multiple cognitive deficits reminiscent of AD symptomology. Hippocampal cognitive impairment and pathology were delayed with N-acetyl-cysteine (NaC) treatment, which strongly suggests that reactive oxygen species (ROS) are the drivers of downstream pathologies such as elevated amyloid beta and hyperphosphorylated tau. These features demonstrate a desired pathophenotype that distinguishes our model from current transgenic rodent AD models. A preclinical model that presents a phenotype of non-genetic AD-like pathologies and cognitive deficits would benefit the sAD field, particularly when translating therapeutics from the preclinical to the clinical phase.


Asunto(s)
Enfermedad de Alzheimer , Trastornos del Conocimiento , Ratones , Humanos , Animales , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/genética , Memoria , Animales Modificados Genéticamente , Modelos Animales de Enfermedad
5.
Am J Transplant ; 21(8): 2688-2697, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33370494

RESUMEN

Uninephrectomy (UNx) in living kidney donors for transplantation is now routine clinical practice. While chronic kidney disease, due to bilateral kidney dysfunction, is associated with insulin resistance, liver steatosis, and type 2 diabetes, the metabolic impact of UNx remains unclear. To better understand the crosstalk between the kidney and insulin target tissues, we studied the metabolic consequences of UNx and the potential involvement of class II PI3K-C2ß, the inactivation of which has been reported to result in insulin sensitization. Mice underwent UNx or sham operation followed by either normal chow or high-fat diet (HFD). Seventeen weeks post-UNx, mice showed improved glucose tolerance, insulin sensitivity, and decreased HFD-induced liver steatosis. This was associated with an enhanced serum FGF21 and insulin-stimulated Akt signaling in the liver and muscle of both lean and obese mice. Remarkably, the combination of UNx and PI3K-C2ß inactivation protected against HFD-induced obesity and further potentiated the metabolic improvement observed in WT UNx mice correlating with a synergistic increase in metabolic tissues of (1) insulin-stimulated Akt signaling (2) FGFR1 and ßKlotho expression. We demonstrated a potential beneficial effect of kidney donation and more effectively with PI3K-C2ß inactivation to protect against metabolic disorders through a mutual insulin/FGF21 sensitization.


Asunto(s)
Fosfatidilinositol 3-Quinasas Clase II/genética , Diabetes Mellitus Tipo 2 , Hígado Graso , Resistencia a la Insulina , Animales , Diabetes Mellitus Tipo 2/etiología , Hígado Graso/etiología , Hígado Graso/prevención & control , Insulina , Hígado , Ratones , Ratones Endogámicos C57BL , Obesidad/etiología
6.
Ann Surg ; 273(5): 1012-1021, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-31188196

RESUMEN

OBJECTIVE: To evaluate the potential changes in the plasma levels of resolvin D1 (RvD1) in patients with trauma and hemorrhage. Having found that trauma results in a profound reduction in plasma RvD1 in patients, we have then investigated the effects of RvD1 on the organ injury and dysfunction associated with hemorrhagic shock (HS) in the rat. BACKGROUND: HS is a common cause of death in trauma due to excessive systemic inflammation and multiple organ failure. RvD1 is a member of the resolvin family of pro-resolution mediators. METHODS: Blood samples were drawn from critically injured patients (n = 27, ACITII-prospective observational cohort study) within 2 hours of injury for targeted liquid chromatography tandem mass spectrometry. HS rats (removal of blood to reduce arterial pressure to 30 ±â€Š2 mm Hg, 90 minutes, followed by resuscitation) were treated with RvD1 (0.3 or 1 µg/kg intravenous (i.v.)) or vehicle (n = 7). Parameters of organ injury and dysfunction were determined. RESULTS: Plasma levels of RvD1 (mg/dL) were reduced in patients with trauma+HS (0.17 ±â€Š0.08) when compared with healthy volunteers (0.76 ±â€Š0.25) and trauma patients (0.62 ±â€Š0.20). In rats with HS, RvD1 attenuated the kidney dysfunction, liver injury, and tissue ischemia. RvD1 also reduced activation of the nuclear factor (NF)-κB pathway and reduced the expression of pro-inflammatory proteins such as inducible nitric oxide synthase, tumor necrosis factor-α, interleukin-1ß, and interleukin-6. CONCLUSION: Plasma RvD1 is reduced in patients with trauma-HS. In rats with HS, administration of synthetic RvD1 on resuscitation attenuated the multiple organ failure associated with HS by a mechanism that involves inhibition of the activation of NF-κB.


Asunto(s)
Ácidos Docosahexaenoicos/farmacología , Insuficiencia Multiorgánica/tratamiento farmacológico , Choque Hemorrágico/tratamiento farmacológico , Animales , Biomarcadores/sangre , Citocinas/sangre , Modelos Animales de Enfermedad , Inmunohistoquímica , Masculino , Insuficiencia Multiorgánica/sangre , Insuficiencia Multiorgánica/etiología , Ratas , Ratas Wistar , Choque Hemorrágico/sangre , Choque Hemorrágico/complicaciones
7.
Int J Mol Sci ; 22(6)2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33801983

RESUMEN

Lipids play an essential role in both tissue protection and damage. Tissue ischemia creates anaerobic conditions in which enzyme inactivation occurs, and reperfusion can initiate oxidative stress that leads to harmful changes in membrane lipids, the formation of aldehydes, and chain damage until cell death. The critical event in such a series of harmful events in the cell is the unwanted accumulation of fatty acids that leads to lipotoxicity. Lipid analysis provides additional insight into the pathogenesis of ischemia/reperfusion (I/R) disorders and reveals new targets for drug action. The profile of changes in the composition of fatty acids in the cell, as well as the time course of these changes, indicate both the mechanism of damage and new therapeutic possibilities. A therapeutic approach to reperfusion lipotoxicity involves attenuation of fatty acids overload, i.e., their transport to adipose tissue and/or inhibition of the adverse effects of fatty acids on cell damage and death. The latter option involves using PPAR agonists and drugs that modulate the transport of fatty acids via carnitine into the interior of the mitochondria or the redirection of long-chain fatty acids to peroxisomes.


Asunto(s)
Ácidos Grasos/metabolismo , Lipidómica/métodos , Lípidos/análisis , Daño por Reperfusión/terapia , Tejido Adiposo/metabolismo , Animales , Carnitina/metabolismo , Humanos , Lípidos/química , Mitocondrias/metabolismo , Estrés Oxidativo , Daño por Reperfusión/diagnóstico , Daño por Reperfusión/metabolismo
8.
J Pathol ; 248(1): 88-102, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30632166

RESUMEN

Ischemia/reperfusion (I/R) injury is a severe inflammatory insult associated with numerous pathologies, such as myocardial infarction, stroke and acute kidney injury. I/R injury is characterized by a rapid influx of activated neutrophils secreting toxic free radical species and degrading enzymes that can irreversibly damage the tissue, thus impairing organ functions. Significant efforts have been invested in identifying therapeutic targets to suppress neutrophil recruitment and activation post-I/R injury. In this context, pharmacological targeting of neutrophil elastase (NE) has shown promising anti-inflammatory efficacy in a number of experimental and clinical settings of I/R injury and is considered a plausible clinical strategy for organ care. However, the mechanisms of action of NE, and hence its inhibitors, in this process are not fully understood. Here we conducted a comprehensive analysis of the impact of NE genetic deletion on neutrophil infiltration in four murine models of I/R injury as induced in the heart, kidneys, intestine and cremaster muscle. In all models, neutrophil migration into ischemic regions was significantly suppressed in NE-/- mice as compared with wild-type controls. Analysis of inflamed cremaster muscle and mesenteric microvessels by intravital and confocal microscopy revealed a selective entrapment of neutrophils within venular walls, most notably at the level of the venular basement membrane (BM) following NE deletion/pharmacological blockade. This effect was associated with the suppression of NE-mediated remodeling of the low matrix protein expressing regions within the venular BM used by transmigrating neutrophils as exit portals. Furthermore, whilst NE deficiency led to reduced neutrophil activation and vascular leakage, levels of monocytes and prohealing M2 macrophages were reduced in tissues of NE-/- mice subjected to I/R. Collectively our results identify a vital and non-redundant role for NE in supporting neutrophil breaching of the venular BM post-I/R injury but also suggest a protective role for NE in promoting tissue repair. © 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Asunto(s)
Elastasa de Leucocito/fisiología , Neutrófilos/fisiología , Daño por Reperfusión/enzimología , Migración Transendotelial y Transepitelial/fisiología , Remodelación Vascular/fisiología , Animales , Membrana Basal/enzimología , Membrana Basal/patología , Membrana Basal/fisiopatología , Modelos Animales de Enfermedad , Eliminación de Gen , Riñón/irrigación sanguínea , Riñón/patología , Elastasa de Leucocito/deficiencia , Elastasa de Leucocito/genética , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Confocal , Daño por Reperfusión Miocárdica/enzimología , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/fisiopatología , Infiltración Neutrófila/fisiología , Neutrófilos/enzimología , Daño por Reperfusión/patología , Daño por Reperfusión/fisiopatología , Vénulas/enzimología , Vénulas/patología , Vénulas/fisiopatología
9.
J Am Soc Nephrol ; 30(1): 33-49, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30530834

RESUMEN

BACKGROUND: During kidney fibrosis, a hallmark and promoter of CKD (regardless of the underlying renal disorder leading to CKD), the extracellular-regulated kinase 1/2 (ERK1/2) pathway, is activated and has been implicated in the detrimental differentiation and expansion of kidney fibroblasts. An ERK1/2 pathway inhibitor, trametinib, is currently used in the treatment of melanoma, but its efficacy in the setting of CKD and renal fibrosis has not been explored. METHODS: We investigated whether trametinib has antifibrotic effects in two mouse models of renal fibrosis-mice subjected to unilateral ureteral obstruction (UUO) or fed an adenine-rich diet-as well as in cultured primary human fibroblasts. We also used immunoblot analysis, immunohistochemical staining, and other tools to study underlying molecular mechanisms for antifibrotic effects. RESULTS: Trametinib significantly attenuated collagen deposition and myofibroblast differentiation and expansion in UUO and adenine-fed mice. We also discovered that in injured kidneys, inhibition of the ERK1/2 pathway by trametinib ameliorated mammalian target of rapamycin complex 1 (mTORC1) activation, another key profibrotic signaling pathway. Trametinib also inhibited the ERK1/2 pathway in cultured primary human renal fibroblasts stimulated by application of TGF-ß1, the major profibrotic cytokine, thereby suppressing downstream mTORC1 pathway activation. Additionally, trametinib reduced the expression of myofibroblast marker α-smooth muscle actin and the proliferation of renal fibroblasts, corroborating our in vivo data. Crucially, trametinib also significantly ameliorated renal fibrosis progression when administered to animals subsequent to myofibroblast activation. CONCLUSIONS: Further study of trametinib as a potential candidate for the treatment of chronic renal fibrotic diseases of diverse etiologies is warranted.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular/efectos de los fármacos , Diana Mecanicista del Complejo 1 de la Rapamicina/efectos de los fármacos , Piridonas/farmacología , Pirimidinonas/farmacología , Insuficiencia Renal Crónica/tratamiento farmacológico , Insuficiencia Renal Crónica/patología , Transducción de Señal/efectos de los fármacos , Animales , Biopsia con Aguja , Células Cultivadas , Modelos Animales de Enfermedad , Quinasas MAP Reguladas por Señal Extracelular/genética , Fibroblastos/efectos de los fármacos , Fibrosis/tratamiento farmacológico , Fibrosis/patología , Inmunohistoquímica , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Ratones , Terapia Molecular Dirigida/métodos , Distribución Aleatoria , Valores de Referencia , Insuficiencia Renal Crónica/genética , Transducción de Señal/genética
11.
FASEB J ; 32(7): 3816-3831, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29465314

RESUMEN

The severity of cardiac dysfunction predicts mortality in sepsis. Activation of transient receptor potential vanilloid receptor type (TRPV)-1, a predominantly neuronal nonselective cation channel, has been shown to improve outcome in sepsis and endotoxemia. However, the role of TRPV1 and the identity of its endogenous ligands in the cardiac dysfunction caused by sepsis and endotoxemia are unknown. Using TRPV1-/- and TRPV1+/+ mice, we showed that endogenous activation of cardiac TRPV1 during sepsis is key to limiting the ensuing cardiac dysfunction. Use of liquid chromatography-tandem mass spectrometry lipid analysis and selective inhibitors of arachidonic metabolism suggest that the arachidonate-derived TRPV1 activator, 20-hydroxyeicosateraenoic acid (20-HETE), underlies a substantial component of TRPV1-mediated cardioprotection in sepsis. Moreover, using selective antagonists for neuropeptide receptors, we show that this effect of TRPV1 relates to the activity of neuronally released cardiac calcitonin gene-related peptide (CGRP) and that, accordingly, administration of CGRP can rescue cardiac dysfunction in severe endotoxemia. In sum activation of TRPV1 by 20-HETE leads to the release of CGRP, which protects the heart against the cardiac dysfunction in endotoxemia and identifies both TRPV1 and CGRP receptors as potential therapeutic targets in endotoxemia.-Chen, J., Hamers, A. J. P., Finsterbusch, M., Massimo, G., Zafar, M., Corder, R., Colas, R. A., Dalli, J., Thiemermann, C., Ahluwalia, A. Endogenously generated arachidonate-derived ligands for TRPV1 induce cardiac protection in sepsis.


Asunto(s)
Cardiomiopatías/prevención & control , Cardiotónicos/farmacología , Endotoxemia/complicaciones , Ácidos Hidroxieicosatetraenoicos/metabolismo , Canales Catiónicos TRPV/metabolismo , Animales , Péptido Relacionado con Gen de Calcitonina/metabolismo , Péptido Relacionado con Gen de Calcitonina/farmacología , Péptido Relacionado con Gen de Calcitonina/uso terapéutico , Cardiomiopatías/etiología , Cardiotónicos/uso terapéutico , Células HEK293 , Corazón/efectos de los fármacos , Humanos , Ácidos Hidroxieicosatetraenoicos/farmacología , Ratones , Ratones Endogámicos C57BL , Miocardio/metabolismo , Canales Catiónicos TRPV/agonistas
12.
Diabetologia ; 61(2): 482-495, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29085990

RESUMEN

AIMS/HYPOTHESIS: Microvascular complications in the heart and kidney are strongly associated with an overall rise in inflammation. Annexin A1 (ANXA1) is an endogenous anti-inflammatory molecule that limits and resolves inflammation. In this study, we have used a bedside to bench approach to investigate: (1) ANXA1 levels in individuals with type 1 diabetes; (2) the role of endogenous ANXA1 in nephropathy and cardiomyopathy in experimental type 1 diabetes; and (3) whether treatment with human recombinant ANXA1 attenuates nephropathy and cardiomyopathy in a murine model of type 1 diabetes. METHODS: ANXA1 was measured in plasma from individuals with type 1 diabetes with or without nephropathy and healthy donors. Experimental type 1 diabetes was induced in mice by injection of streptozotocin (STZ; 45 mg/kg i.v. per day for 5 consecutive days) in C57BL/6 or Anxa1 -/- mice. Diabetic mice were treated with human recombinant (hr)ANXA1 (1 µg, 100 µl, 50 mmol/l HEPES; 140 mmol/l NaCl; pH 7.4, i.p.) or vehicle (100 µl, 50 mmol/l HEPES; 140 mmol/l NaCl; pH 7.4, i.p.). RESULTS: Plasma levels of ANXA1 were elevated in individuals with type 1 diabetes with/without nephropathy compared with healthy individuals (66.0 ± 4.2/64.0 ± 4 ng/ml vs 35.9 ± 2.3 ng/ml; p < 0.05). Compared with diabetic wild-type (WT) mice, diabetic Anxa1 -/- mice exhibited a worse diabetic phenotype and developed more severe cardiac (ejection fraction; 76.1 ± 1.6% vs 49.9 ± 0.9%) and renal dysfunction (proteinuria; 89.3 ± 5.0 µg/mg vs 113.3 ± 5.5 µg/mg). Mechanistically, compared with non-diabetic WT mice, the degree of the phosphorylation of mitogen-activated protein kinases (MAPKs) p38, c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK) was significantly higher in non-diabetic Anxa1 -/- mice in both the heart and kidney, and was further enhanced after STZ-induced type 1 diabetes. Prophylactic treatment with hrANXA1 (weeks 1-13) attenuated both cardiac (ejection fraction; 54.0 ± 1.6% vs 72.4 ± 1.0%) and renal (proteinuria; 89.3 ± 5.0 µg/mg vs 53.1 ± 3.4 µg/mg) dysfunction associated with STZ-induced diabetes, while therapeutic administration of hrANXA1 (weeks 8-13), after significant cardiac and renal dysfunction had already developed, halted the further functional decline in cardiac and renal function seen in diabetic mice administered vehicle. In addition, administration of hrANXA1 attenuated the increase in phosphorylation of p38, JNK and ERK, and restored phosphorylation of Akt in diabetic mice. CONCLUSIONS/INTERPRETATION: Overall, these results demonstrate that ANXA1 plasma levels are elevated in individuals with type 1 diabetes independent of a significant impairment in renal function. Furthermore, in mouse models with STZ-induced type 1 diabetes, ANXA1 protects against cardiac and renal dysfunction by returning MAPK signalling to baseline and activating pro-survival pathways (Akt). We propose ANXA1 to be a potential therapeutic option for the control of comorbidities in type 1 diabetes.


Asunto(s)
Anexina A1/sangre , Diabetes Mellitus Tipo 1/sangre , Animales , Anexina A1/genética , Anexina A1/metabolismo , Western Blotting , Diabetes Mellitus Experimental/sangre , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Fosforilación , Proteínas Proto-Oncogénicas c-akt , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
13.
Ann Surg ; 268(2): 348-356, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-28288070

RESUMEN

OBJECTIVE: To evaluate (1) levels of the host-defense/antimicrobial peptide LL-37 in patients with trauma and hemorrhagic shock (HS) and (2) the effects of a synthetic host-defense peptide; Pep19-4LF on multiple organ failure (MOF) associated with HS. BACKGROUND: HS is a common cause of death in severely injured patients. There is no specific therapy that reduces HS-associated MOF. METHODS: (1) LL-37 was measured in 47 trauma/HS patients admitted to an urban major trauma center. (2) Male Wistar rats were submitted to HS (90 min, target mean arterial pressure: 27-32 mm Hg) or sham operation. Rats were treated with Pep19-4LF [66 (n = 8) or 333 µg/kg ·â€Šh (n = 8)] or vehicle (n = 12) for 4 hours following resuscitation. RESULTS: Plasma LL-37 was 12-fold higher in patients with trauma/HS compared to healthy volunteers. HS rats treated with Pep19-4LF (high dose) had a higher mean arterial pressure at the end of the 4-hour resuscitation period (79 ±â€Š4 vs 54 ±â€Š5 mm Hg) and less renal dysfunction, liver injury, and lung inflammation than HS rats treated with vehicle. Pep19-4LF enhanced (kidney/liver) the phosphorylation of (1) protein kinase B and (2) endothelial nitric oxide synthase. Pep19-4LF attenuated the HS-induced (1) translocation of p65 from cytosol to nucleus, (2) phosphorylation of IκB kinase on Ser, and (3) phosphorylation of IκBα on Ser resulting in inhibition of nuclear factor kappa B and formation of proinflammatory cytokines. Pep19-4LF prevented the release of tumor necrosis factor alpha caused by heparan sulfate in human mononuclear cells by binding to this damage-associated molecular pattern. CONCLUSIONS: Trauma-associated HS results in release of LL-37. The synthetic host-defense/antimicrobial peptide Pep19-4LF attenuates the organ injury/dysfunction associated with HS.


Asunto(s)
Antiinfecciosos/uso terapéutico , Péptidos Catiónicos Antimicrobianos/sangre , Insuficiencia Multiorgánica/prevención & control , Péptidos/uso terapéutico , Sustancias Protectoras/uso terapéutico , Choque Hemorrágico/tratamiento farmacológico , Heridas y Lesiones/complicaciones , Animales , Biomarcadores/sangre , Estudios de Casos y Controles , Terapia Combinada , Humanos , Masculino , Insuficiencia Multiorgánica/etiología , Ratas , Ratas Wistar , Resucitación , Choque Hemorrágico/sangre , Choque Hemorrágico/complicaciones , Choque Hemorrágico/diagnóstico , Resultado del Tratamiento , Catelicidinas
15.
Infection ; 46(5): 687-691, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30105433

RESUMEN

PURPOSE: Pre-clinical animal studies precede the majority of clinical trials. While the clinical sepsis definitions and recommended treatments are regularly updated, a systematic review of pre-clinical models of sepsis has not been done and clear modeling guidelines are lacking. To address this deficit, a Wiggers-Bernard Conference on pre-clinical sepsis modeling was held in Vienna in May, 2017. The conference goal was to identify limitations of pre-clinical sepsis models and to propose a set of guidelines, defined as the "Minimum Quality Threshold in Pre-Clinical Sepsis Studies" (MQTiPSS), to enhance translational value of these models. METHODS: 31 experts from 13 countries participated and were divided into 6 thematic Working Groups (WG): (1) Study Design, (2) Humane modeling, (3) Infection types, (4) Organ failure/dysfunction, (5) Fluid resuscitation and (6) Antimicrobial therapy endpoints. As basis for the MQTiPSS discussions, the participants conducted a literature review of the 260 most highly cited scientific articles on sepsis models (2002-2013). RESULTS: Overall, the participants reached consensus on 29 points; 20 at "recommendation" (R) and 9 at "consideration" (C) strength. This Executive Summary provides a synopsis of the MQTiPSS consensus (Tables 1, 2 and 3). CONCLUSIONS: We believe that these recommendations and considerations will serve to bring a level of standardization to pre-clinical models of sepsis and ultimately improve translation of pre-clinical findings. These guideline points are proposed as "best practices" that should be implemented for animal sepsis models. In order to encourage its wide dissemination, this article is freely accessible in Shock, Infection and Intensive Care Medicine Experimental.

16.
BMC Nephrol ; 19(1): 346, 2018 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-30509210

RESUMEN

BACKGROUND: The end stage renal disease population has a 20 fold higher incidence of cardiovascular mortality compared to the overall population. The development of reno-cardiac syndrome in these patients will result in cardiovascular events to be the cause of 50% of fatalities. There is therefore a need to research improved therapeutic strategies to combat renal cardiac pathologies. Murine in vivo models contribute greatly to such research allowing for specific genetic modification and reduced miscellany, however there is currently no reliable model of reno-cardiac syndrome in the most common genetically modified mouse strain, the C57BL/6. In this study we have manipulated an established model of chronic renal disease using adenine infused diet and prolonged the course of its pathology achieving chronic renal failure and subsequent reno-cardiac syndrome in the C57BL/6 mouse. METHODS: Eight week-old male C57BL/ 6 mice were acclimatised for 7 days before administration of a 0.15% adenine diet or control diet for 20 weeks. Cardiac function was assessed in mice at week 20 by echocardiography. At experiment termination blood and urine samples were analysed biochemically and organ dysfunction/injury was determined using immunoblotting and immunohistochemistry. RESULTS: Administration of 0.15% adenine diet caused progressive renal failure resulting in reno-cardiac syndrome. At endpoint uraemia was confirmed by blood biochemistry which in the adenine fed mice showed significant increases in serum creatinine, urea, calcium (P < 0.0001) potassium (P < 0.05), and a significantly reduced glomerular filtration rate (P < 0.05). Reno-cardiac syndrome was confirmed by a significantly increased heart to body weight ratio (P < 0.0001) and echocardiography which showed significant reductions in percentage of ejection fraction, fractional shortening, fractional area change, (P < 0.0001) and an increase in left ventricular end diastolic volume (P < 0.05). Immunoblotting of kidney and heart tissue showed increased apoptosis (caspase 3) and fibrosis (fibronectin) and increases in the cardiac levels of phosphorylated Akt, and renal total Akt. Immunohistochemistry for α-SMA, collagen 1 and collagen 3 further confirmed fibrosis. CONCLUSIONS: We present a novel regimen of adenine diet which induces both chronic kidney disease and reno-cardiac syndrome in the C57/BL6 mouse strain. The non-surgical nature of this model makes it highly reproducible compared to other models currently available.


Asunto(s)
Adenina/toxicidad , Síndrome Cardiorrenal/diagnóstico por imagen , Síndrome Cardiorrenal/fisiopatología , Modelos Animales de Enfermedad , Adenina/administración & dosificación , Animales , Síndrome Cardiorrenal/inducido químicamente , Masculino , Ratones , Ratones Endogámicos C57BL , Distribución Aleatoria
17.
J Am Soc Nephrol ; 28(1): 94-105, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27153924

RESUMEN

Patients with CKD requiring dialysis have a higher risk of sepsis and a 100-fold higher mortality rate than the general population with sepsis. The severity of cardiac dysfunction predicts mortality in patients with sepsis. Here, we investigated the effect of preexisting CKD on cardiac function in mice with sepsis and whether inhibition of IκB kinase (IKK) reduces the cardiac dysfunction in CKD sepsis. Male C57BL/6 mice underwent 5/6 nephrectomy, and 8 weeks later, they were subjected to LPS (2 mg/kg) or sepsis by cecal ligation and puncture (CLP). Compared with sham operation, nephrectomy resulted in significant increases in urea and creatinine levels, a small (P<0.05) reduction in ejection fraction (echocardiography), and increases in the cardiac levels of phosphorylated IκBα, Akt, and extracellular signal-regulated kinase 1/2; nuclear translocation of the NF-κB subunit p65; and inducible nitric oxide synthase (iNOS) expression. When subjected to LPS or CLP, compared with sham-operated controls, CKD mice exhibited exacerbation of cardiac dysfunction and lung inflammation, greater increases in levels of plasma cytokines (TNF-α, IL-1ß, IL-6, and IL-10), and greater increases in the cardiac levels of phosphorylated IKKα/ß and IκBα, nuclear translocation of p65, and iNOS expression. Treatment of CKD mice with an IKK inhibitor (IKK 16; 1 mg/kg) 1 hour after CLP or LPS administration attenuated these effects. Thus, preexisting CKD aggravates the cardiac dysfunction caused by sepsis or endotoxemia in mice; this effect may be caused by increased cardiac NF-κB activation and iNOS expression.


Asunto(s)
Cardiopatías/enzimología , Cardiopatías/prevención & control , Quinasa I-kappa B/antagonistas & inhibidores , Insuficiencia Renal Crónica/enzimología , Sepsis/complicaciones , Animales , Cardiopatías/etiología , Masculino , Ratones , Ratones Endogámicos C57BL , Insuficiencia Renal Crónica/complicaciones
18.
Ann Surg ; 265(2): 408-417, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28059970

RESUMEN

OBJECTIVE: To evaluate the effects of artesunate on organ injury and dysfunction associated with hemorrhagic shock (HS) in the rat. BACKGROUND: HS is still a common cause of death in severely injured patients and is characterized by impairment of organ perfusion, systemic inflammatory response, and multiple organ failure. There is no specific therapy that reduces organ injury/dysfunction. Artesunate exhibits pharmacological actions beyond its antimalarial activity, such as anticancer, antiviral, and anti-inflammatory effects. METHODS: Rats were submitted to HS. Mean arterial pressure was reduced to 30 mm Hg for 90 minutes, followed by resuscitation. Rats were randomly treated with artesunate (2.4 or 4.8 mg/kg i.v.) or vehicle upon resuscitation. Four hours later, parameters of organ injury and dysfunction were assessed. RESULTS: Artesunate attenuated the multiple organ injury and dysfunction caused by HS. Pathway analysis of RNA sequencing provided good evidence to support an effect of artesunate on the Akt-survival pathway, leading to downregulation of interleukin-1 receptor-associated kinase 1. Using Western blot analysis, we confirmed that treatment of HS rats with artesunate enhanced the phosphorylation (activation) of Protein kinase B (Akt) and endothelial nitric oxide synthase and the phosphorylation (inhibition) of glycogen synthase kinase-3ß (GSK-3ß). Moreover, artesunate attenuated the HS-induced activation of nuclear factor kappa B and reduced the expression of proinflammatory proteins (inducible nitric oxide synthase, tumor necrosis factor-α, and interleukin 6). CONCLUSIONS: Artesunate attenuated the organ injury/dysfunction associated with HS by a mechanism that involves the activation of the Akt-endothelial nitric oxide synthase survival pathway, and the inhibition of glycogen synthase kinase-3ß and nuclear factor kappa B. A phase II clinical trial evaluating the effects of good manufacturing practice-artesunate in patients with trauma and severe hemorrhage is planned.


Asunto(s)
Artemisininas/uso terapéutico , Insuficiencia Multiorgánica/prevención & control , Sustancias Protectoras/uso terapéutico , Resucitación/efectos adversos , Choque Hemorrágico/terapia , Animales , Artesunato , Biomarcadores/metabolismo , Terapia Combinada , Masculino , Insuficiencia Multiorgánica/etiología , Insuficiencia Multiorgánica/metabolismo , Distribución Aleatoria , Ratas , Ratas Wistar , Choque Hemorrágico/metabolismo , Resultado del Tratamiento
19.
Proc Natl Acad Sci U S A ; 111(52): 18685-90, 2014 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-25512512

RESUMEN

Sepsis is characterized by overlapping phases of excessive inflammation temporally aligned with an immunosuppressed state, defining a complex clinical scenario that explains the lack of successful therapeutic options. Here we tested whether the formyl-peptide receptor 2/3 (Fpr2/3)--ortholog to human FPR2/ALX (receptor for lipoxin A4)--exerted regulatory and organ-protective functions in experimental sepsis. Coecal ligature and puncture was performed to obtain nonlethal polymicrobial sepsis, with animals receiving antibiotics and analgesics. Clinical symptoms, temperature, and heart function were monitored up to 24 h. Peritoneal lavage and plasma samples were analyzed for proinflammatory and proresolving markers of inflammation and organ dysfunction. Compared with wild-type mice, Fpr2/3(-/-) animals exhibited exacerbation of disease severity, including hypothermia and cardiac dysfunction. This scenario was paralleled by higher levels of cytokines [CXCL1 (CXC receptor ligand 1), CCL2 (CC receptor ligand 2), and TNFα] as quantified in cell-free biological fluids. Reduced monocyte recruitment in peritoneal lavages of Fpr2/3(-/-) animals was reflected by a higher granulocyte/monocyte ratio. Monitoring Fpr2/3(-/-) gene promoter activity with a GFP proxy marker revealed an over threefold increase in granulocyte and monocyte signals at 24 h post-coecal ligature and puncture, a response mediated by TNFα. Treatment with a receptor peptido-agonist conferred protection against myocardial dysfunction in wild-type, but not Fpr2/3(-/-), animals. Therefore, coordinated physio-pharmacological analyses indicate nonredundant modulatory functions for Fpr2/3 in experimental sepsis, opening new opportunities to manipulate the host response for therapeutic development.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Granulocitos/metabolismo , Monocitos/metabolismo , Receptores de Formil Péptido/metabolismo , Sepsis/metabolismo , Transducción de Señal , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Quimiocina CXCL1/genética , Quimiocina CXCL1/metabolismo , Modelos Animales de Enfermedad , Granulocitos/patología , Humanos , Ratones , Ratones Noqueados , Monocitos/patología , Peritoneo/metabolismo , Peritoneo/patología , Receptores de Formil Péptido/genética , Sepsis/genética , Sepsis/patología , Factores de Tiempo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
20.
Proc Natl Acad Sci U S A ; 111(10): 3817-22, 2014 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-24569863

RESUMEN

Insulin resistance and associated metabolic sequelae are common in chronic kidney disease (CKD) and are positively and independently associated with increased cardiovascular mortality. However, the pathogenesis has yet to be fully elucidated. 11ß-Hydroxysteroid dehydrogenase type 1 (11ßHSD1) catalyzes intracellular regeneration of active glucocorticoids, promoting insulin resistance in liver and other metabolic tissues. Using two experimental rat models of CKD (subtotal nephrectomy and adenine diet) which show early insulin resistance, we found that 11ßHSD1 mRNA and protein increase in hepatic and adipose tissue, together with increased hepatic 11ßHSD1 activity. This was associated with intrahepatic but not circulating glucocorticoid excess, and increased hepatic gluconeogenesis and lipogenesis. Oral administration of the 11ßHSD inhibitor carbenoxolone to uremic rats for 2 wk improved glucose tolerance and insulin sensitivity, improved insulin signaling, and reduced hepatic expression of gluconeogenic and lipogenic genes. Furthermore, 11ßHSD1(-/-) mice and rats treated with a specific 11ßHSD1 inhibitor (UE2316) were protected from metabolic disturbances despite similar renal dysfunction following adenine experimental uremia. Therefore, we demonstrate that elevated hepatic 11ßHSD1 is an important contributor to early insulin resistance and dyslipidemia in uremia. Specific 11ßHSD1 inhibitors potentially represent a novel therapeutic approach for management of insulin resistance in patients with CKD.


Asunto(s)
11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/metabolismo , Resistencia a la Insulina/fisiología , ARN Mensajero/metabolismo , Insuficiencia Renal Crónica/complicaciones , Uremia/enzimología , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/antagonistas & inhibidores , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/genética , Análisis de Varianza , Animales , Glucemia , Carbenoxolona/administración & dosificación , Carbenoxolona/farmacología , Corticosterona/sangre , Citocinas/sangre , Ensayo de Inmunoadsorción Enzimática , Glucocorticoides/metabolismo , Immunoblotting , Insulina/sangre , Hígado/metabolismo , Ratones , Ratones Noqueados , Ratas , Ratas Wistar , Reacción en Cadena en Tiempo Real de la Polimerasa , Uremia/etiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA