Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Exp Hematol Oncol ; 13(1): 40, 2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38615034

RESUMEN

Glioblastoma (GBM) is a fatal brain tumour that is traditionally diagnosed based on histological features. Recent molecular profiling studies have reshaped the World Health Organization approach in the classification of central nervous system tumours to include more pathogenetic hallmarks. These studies have revealed that multiple oncogenic pathways are dysregulated, which contributes to the aggressiveness and resistance of GBM. Such findings have shed light on the molecular vulnerability of GBM and have shifted the disease management paradigm from chemotherapy to targeted therapies. Targeted drugs have been developed to inhibit oncogenic targets in GBM, including receptors involved in the angiogenic axis, the signal transducer and activator of transcription 3 (STAT3), the PI3K/AKT/mTOR signalling pathway, the ubiquitination-proteasome pathway, as well as IDH1/2 pathway. While certain targeted drugs showed promising results in vivo, the translatability of such preclinical achievements in GBM remains a barrier. We also discuss the recent developments and clinical assessments of targeted drugs, as well as the prospects of cell-based therapies and combinatorial therapy as novel ways to target GBM. Targeted treatments have demonstrated preclinical efficacy over chemotherapy as an alternative or adjuvant to the current standard of care for GBM, but their clinical efficacy remains hindered by challenges such as blood-brain barrier penetrance of the drugs. The development of combinatorial targeted therapies is expected to improve therapeutic efficacy and overcome drug resistance.

2.
NPJ Precis Oncol ; 8(1): 52, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38413740

RESUMEN

Globally, colorectal cancer (CRC) is the third most frequently occurring cancer. Progression on to an advanced metastatic malignancy (metCRC) is often indicative of poor prognosis, as the 5-year survival rates of patients decline rapidly. Despite the availability of many systemic therapies for the management of metCRC, the long-term efficacies of these regimens are often hindered by the emergence of treatment resistance due to intratumoral and intertumoral heterogeneity. Furthermore, not all systemic therapies have associated biomarkers that can accurately predict patient responses. Hence, a functional personalised oncology (FPO) approach can enable the identification of patient-specific combinatorial vulnerabilities and synergistic combinations as effective treatment strategies. To this end, we established a panel of CRC patient-derived organoids (PDOs) as clinically relevant biological systems, of which three pairs of matched metCRC PDOs were derived from the primary sites (ptCRC) and metastatic lesions (mCRC). Histological and genomic characterisation of these PDOs demonstrated the preservation of histopathological and genetic features found in the parental tumours. Subsequent application of the phenotypic-analytical drug combination interrogation platform, Quadratic Phenotypic Optimisation Platform, in these pairs of PDOs identified patient-specific drug sensitivity profiles to epigenetic-based combination therapies. Most notably, matched PDOs from one patient exhibited differential sensitivity patterns to the rationally designed drug combinations despite being genetically similar. These findings collectively highlight the limitations of current genomic-driven precision medicine in guiding treatment strategies for metCRC patients. Instead, it suggests that epigenomic profiling and application of FPO could complement the identification of novel combinatorial vulnerabilities to target synchronous ptCRC and mCRC.

3.
Bioeng Transl Med ; 8(1): e10363, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36684069

RESUMEN

Deregulation of MYC is among the most frequent oncogenic drivers in hepatocellular carcinoma (HCC). Unfortunately, the clinical success of MYC-targeted therapies is limited. Synthetic lethality offers an alternative therapeutic strategy by leveraging on vulnerabilities in tumors with MYC deregulation. While several synthetic lethal targets of MYC have been identified in HCC, the need to prioritize targets with the greatest therapeutic potential has been unmet. Here, we demonstrate that by pairing splice-switch oligonucleotide (SSO) technologies with our phenotypic-analytical hybrid multidrug interrogation platform, quadratic phenotypic optimization platform (QPOP), we can disrupt the functional expression of these targets in specific combinatorial tests to rapidly determine target-target interactions and rank synthetic lethality targets. Our SSO-QPOP analyses revealed that simultaneous attenuation of CHK1 and BRD4 function is an effective combination specific in MYC-deregulated HCC, successfully suppressing HCC progression in vitro. Pharmacological inhibitors of CHK1 and BRD4 further demonstrated its translational value by exhibiting synergistic interactions in patient-derived xenograft organoid models of HCC harboring high levels of MYC deregulation. Collectively, our work demonstrates the capacity of SSO-QPOP as a target prioritization tool in the drug development pipeline, as well as the therapeutic potential of CHK1 and BRD4 in MYC-driven HCC.

4.
ACS Sens ; 8(5): 1989-1999, 2023 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-37129234

RESUMEN

Spalt-like transcription factor 4 (SALL4) is an oncofetal protein that has been identified to drive cancer progression in hepatocellular carcinoma (HCC) and hematological malignancies. Furthermore, a high SALL4 expression level is correlated to poor prognosis in these cancers. However, SALL4 lacks well-structured small-molecule binding pockets, making it difficult to design targeted inhibitors. SALL4-induced expression of oxidative phosphorylation (OXPHOS) genes may serve as a therapeutically targetable vulnerability in HCC through OXPHOS inhibition. Because OXPHOS functions through a set of genes with intertumoral heterogeneous expression, identifying therapeutic sensitivity to OXPHOS inhibitors may not rely on a single clear biomarker. Here, we developed a workflow that utilized molecular beacons, nucleic-acid-based, activatable sensors with high specificity to the target mRNA, delivered by nanodiamonds, to establish an artificial intelligence (AI)-assisted platform for rapid evaluation of patient-specific drug sensitivity. Specifically, when the HCC cells were treated with the nanodiamond-medicated OXPHOS biosensor, high sensitivity and specificity of the sensor allowed for improved identification of OXPHOS expression in cells. Assisted by a trained convolutional neural network, drug sensitivity of cells toward an OXPHOS inhibitor, IACS-010759, could be accurately predicted. AI-assisted OXPHOS drug sensitivity assessment could be accomplished within 1 day, enabling rapid and efficient clinical decision support for HCC treatment. The work proposed here serves as a foundation for the patient-based subtype-specific therapeutic research platform and is well suited for precision medicine.


Asunto(s)
Antineoplásicos , Técnicas Biosensibles , Carcinoma Hepatocelular , Neoplasias Hepáticas , Nanodiamantes , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico , Nanodiamantes/uso terapéutico , Fosforilación Oxidativa , Inteligencia Artificial , Antineoplásicos/uso terapéutico
5.
Mol Oncol ; 17(11): 2275-2294, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36896891

RESUMEN

Hepatocellular carcinoma (HCC) is the third deadliest and sixth most common cancer in the world. Histone-lysine N-methyltransferase EHMT2 (also known as G9a) is a histone methyltransferase frequently overexpressed in many cancer types, including HCC. We showed that Myc-driven liver tumours have a unique H3K9 methylation pattern with corresponding G9a overexpression. This phenomenon of increased G9a was further observed in our c-Myc-positive HCC patient-derived xenografts. More importantly, we showed that HCC patients with higher c-Myc and G9a expression levels portend a poorer survival with lower median survival months. We demonstrated that c-Myc interacts with G9a in HCC and cooperates to regulate c-Myc-dependent gene repression. In addition, G9a stabilises c-Myc to promote cancer development, contributing to the growth and invasive capacity in HCC. Furthermore, combination therapy between G9a and synthetic-lethal target of c-Myc, CDK9, demonstrates strong efficacy in patient-derived avatars of Myc-driven HCC. Our work suggests that targeting G9a could prove to be a potential therapeutic avenue for Myc-driven liver cancer. This will increase our understanding of the underlying epigenetic mechanisms of aggressive tumour initiation and lead to improved therapeutic and diagnostic options for Myc-driven hepatic tumours.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Epigénesis Genética , Antígenos de Histocompatibilidad/genética , Antígenos de Histocompatibilidad/metabolismo , Antígenos de Histocompatibilidad/uso terapéutico , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Metilación
6.
Trends Pharmacol Sci ; 42(3): 166-182, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33422376

RESUMEN

Deregulation of MYC is among the most frequent oncogenic drivers of cancer. Developing targeted therapies against MYC is, therefore, one of the most critical unmet needs of cancer therapy. Unfortunately, MYC has been labelled as undruggable due to the lack of success in developing clinically relevant MYC-targeted therapies. Synthetic lethality is a promising approach that targets MYC-dependent vulnerabilities in cancer. However, translating the synthetic lethality targets to the clinics is still challenging due to the complex nature of cancers. This review highlights the most promising mechanisms of MYC synthetic lethality and how these discoveries are currently translated into the clinic. Finally, we discuss how in silico computational platforms can improve clinical success of synthetic lethality-based therapy.


Asunto(s)
Neoplasias , Proteínas Proto-Oncogénicas c-myc , Mutaciones Letales Sintéticas , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Oncogenes , Proteínas Proto-Oncogénicas c-myc/genética
7.
Nanoscale ; 13(38): 16131-16145, 2021 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-34542130

RESUMEN

Small interfering RNA (siRNA) can cause specific gene silencing and is considered promising for treating a variety of cancers, including hepatocellular carcinoma (HCC). However, siRNA has many undesirable physicochemical properties that limit its application. Additionally, conventional methods for delivering siRNA are limited in their ability to penetrate solid tumors. In this study, nanodiamonds (NDs) were evaluated as a nanoparticle drug delivery platform for improved siRNA delivery into tumor cells. Our results demonstrated that ND-siRNA complexes could effectively be formed through electrostatic interactions. The ND-siRNA complexes allowed for efficient cellular uptake and endosomal escape that protects siRNA from degradation. Moreover, ND delivery of siRNA was more effective at penetrating tumor spheroids compared to liposomal formulations. This enhanced penetration capacity makes NDs ideal vehicles to deliver siRNA against solid tumor masses as efficient gene knockdown and decreased tumor cell proliferation were observed in tumor spheroids. Evaluation of ND-siRNA complexes within the context of a 3D cancer disease model demonstrates the potential of NDs as a promising gene delivery platform against solid tumors, such as HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Nanodiamantes , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Línea Celular Tumoral , Humanos , Liposomas , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , ARN Interferente Pequeño
8.
Hepatol Commun ; 4(9): 1362-1381, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32923839

RESUMEN

Tumor-specific metabolic rewiring, acquired to confer a proliferative and survival advantage over nontransformed cells, represents a renewed focus in cancer therapy development. Hepatocellular carcinoma (HCC), a malignancy that has hitherto been resistant to compounds targeting oncogenic signaling pathways, represents a candidate cancer to investigate the efficacy of selectively antagonizing such adaptive metabolic reprogramming. To this end, we sought to characterize metabolic changes in HCC necessary for tumorigenesis. We analyzed gene expression profiles in three independent large-scale patient cohorts who had HCC. We identified a commonly deregulated purine metabolic signature in tumors with the extent of purine biosynthetic enzyme up-regulation correlated with tumor grade and a predictor of clinical outcome. The functional significance of enhanced purine metabolism as a hallmark in human HCC was then validated using a combination of HCC cell lines, patient-derived xenograft (PDX) organoids, and mouse models. Targeted ablation of purine biosynthesis by knockdown of the rate-limiting enzyme inosine-5'-monophosphate dehydrogenase (IMPDH) or using the drug mycophenolate mofetil (MMF) reduced HCC proliferation in vitro and decreased the tumor burden in vivo. In comparing the sensitivities of PDX tumor organoids to MMF therapy, we found that HCC tumors defined by high levels of IMPDH and guanosine nucleosides were most susceptible to treatment. Mechanistically, a phosphoinositide 3-kinase (PI3K)-E2F transcription factor 1 (E2F1) axis coordinated purine biosynthetic enzyme expression, deregulation of which altered the activity of mitogen-activated protein kinase/RAS signaling. Simultaneously abolishing PI3K signaling and IMPDH activity with clinically approved inhibitors resulted in greatest efficacy in reducing tumor growth in a PDX mouse model. Conclusion: Enhanced purine metabolic activity regulated by PI3K pathway-dependent activation of E2F1 promotes HCC carcinogenesis, suggesting the potential for targeting purine metabolic reprogramming as a precision therapeutic strategy for patients with HCC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA