Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Anal Bioanal Chem ; 414(19): 5817-5828, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35676561

RESUMEN

Nicotine is the principal alkaloid in tobacco and has been the primary subject of scientific investigation for its pharmacological effects contributing to tobacco use, dependence, withdrawal, and physical harm. Related minor alkaloids, accounting for less than 6% of alkaloid content in tobacco leaves, may also mirror some of the same pharmacological effects. To detect such low concentrations of the minor alkaloids, tobacco product methods produced by the Cooperation Centre for Scientific Research Relative to Tobacco (CORESTA) using gas chromatography and flame ionization detection (GC-FID) have been adapted for use with gas chromatography-mass spectrometry (GC-MS). Nicotine and minor alkaloid content in SPECTRUM Nicotine Research Cigarettes (NRC) have previously been determined using GC-FID; however, the minor alkaloids were unable to be detected or quantitated. This study employed UltraPerformance Convergence Chromatography (UPC2) system coupled with tandem mass spectrometry (MS2) to determine the nicotine and minor alkaloid content in NRC tobacco products. CORESTA Recommended Methods (CRMs) were adapted for their sample preparative procedures for optimal extraction followed by detection with UPC2-MS2. These results were compared to two separate CRMs that used GC-FID and GC-MS2 as well as an alternative method with GC-MS2 detection. The GC-FID and GC-MS2 CRM preparations along with the alternative GC-MS2 were unable to detect the analytes in every NRC formulation, whereas the UPC2-MS2 extraction and detection method was able to quantify every analyte in every NRC formulation. This increased sensitivity demonstrates the utility of the UPC2-MS2 analytical method in accurately detecting and quantifying nicotine and minor alkaloids in tobacco filler.


Asunto(s)
Alcaloides , Productos de Tabaco , Alcaloides/análisis , Cromatografía de Gases y Espectrometría de Masas/métodos , Nicotina/análisis , Nicotiana/química , Productos de Tabaco/análisis
2.
Mol Cell Neurosci ; 109: 103566, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33049367

RESUMEN

Human SH-SY5Y neuroblastoma cells stably expressing exogenous CB1 (CB1XS) or CB2 (CB2XS) receptors were developed to investigate endocannabinoid signaling in the extension of neuronal projections. Expression of cannabinoid receptors did not alter proliferation rate, viability, or apoptosis relative to parental SH-SY5Y. Transcripts for endogenous cannabinoid system enzymes (diacylglycerol lipase, monoacylglycerol lipase, α/ß-hydrolase domain containing proteins 6 and 12, N-acyl phosphatidylethanolamine-phospholipase D, and fatty acid amide hydrolase) were not altered by CB1 or CB2 expression. Endocannabinoid ligands 2-arachidonoylglycerol (2-AG) and anandamide were quantitated in SH-SY5Y cells, and diacylglycerol lipase inhibitor tetrahydrolipstatin decreased 2-AG abundance by 90% but did not alter anandamide abundance. M3 muscarinic agonist oxotremorine M, and inhibitors of monoacylglycerol lipase and α/ß hydrolase domain containing proteins 6 &12 increased 2-AG abundance. CB1 receptor expression increased lengths of short (<30 µm) and long (>30 µm) projections, and this effect was significantly reduced by tetrahydrolipstatin, indicative of stimulation by endogenously produced 2-AG. Pertussis toxin, Gßγ inhibitor gallein, and ß-arrestin inhibitor barbadin did not significantly alter long projection length in CB1XS, but significantly reduced short projections, with gallein having the greatest inhibition. The rho kinase inhibitor Y27632 increased CB1 receptor-mediated long projection extension, indicative of actin cytoskeleton involvement. CB1 receptor expression increased GAP43 and ST8SIA2 mRNA and decreased ITGA1 mRNA, whereas CB2 receptor expression increased NCAM and SYT mRNA. We propose that basal endogenous production of 2-AG provides autocrine stimulation of CB1 receptor signaling through Gi/o, Gßγ, and ß-arrestin mechanisms to promote neuritogenesis, and rho kinase influences process extension.


Asunto(s)
Endocannabinoides/fisiología , Neuritas/ultraestructura , Receptor Cannabinoide CB1/fisiología , Receptor Cannabinoide CB2/fisiología , Citoesqueleto de Actina/ultraestructura , Amidas/farmacología , Apoptosis/efectos de los fármacos , Ácidos Araquidónicos/biosíntesis , Línea Celular Tumoral , Endocannabinoides/biosíntesis , Regulación de la Expresión Génica/efectos de los fármacos , Glicéridos/biosíntesis , Humanos , Lipoproteína Lipasa/antagonistas & inhibidores , Lipoproteína Lipasa/metabolismo , Proteínas de Neoplasias/efectos de los fármacos , Proteínas de Neoplasias/fisiología , Proteínas del Tejido Nervioso/biosíntesis , Proteínas del Tejido Nervioso/genética , Neuroblastoma , Orlistat/farmacología , Oxotremorina/farmacología , Toxina del Pertussis/farmacología , Alcamidas Poliinsaturadas , Piridinas/farmacología , Pirimidinas/farmacología , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Receptor Cannabinoide CB1/efectos de los fármacos , Receptor Cannabinoide CB2/efectos de los fármacos , Proteínas Recombinantes/biosíntesis , Transducción de Señal , Xantenos/farmacología
3.
Molecules ; 26(20)2021 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-34684770

RESUMEN

The Sterling Research Group identified pravadoline as an aminoalkylindole (AAI) non-steroidal anti-inflammatory pain reliever. As drug design progressed, the ability of AAI analogs to block prostaglandin synthesis diminished, and antinociceptive activity was found to result from action at the CB1 cannabinoid receptor, a G-protein-coupled receptor (GPCR) abundant in the brain. Several laboratories applied computational chemistry methods to ultimately conclude that AAI and cannabinoid ligands could overlap within a common binding pocket but that WIN55212-2 primarily utilized steric interactions via aromatic stacking, whereas cannabinoid ligands required some electrostatic interactions, particularly involving the CB1 helix-3 lysine. The Huffman laboratory identified strategies to establish CB2 receptor selectivity among cannabimimetic indoles to avoid their CB1-related adverse effects, thereby stimulating preclinical studies to explore their use as anti-hyperalgesic and anti-allodynic pharmacotherapies. Some AAI analogs activate novel GPCRs referred to as "Alkyl Indole" receptors, and some AAI analogs act at the colchicine-binding site on microtubules. The AAI compounds having the greatest potency to interact with the CB1 receptor have found their way into the market as "Spice" or "K2". The sale of these alleged "herbal products" evades FDA consumer protections for proper labeling and safety as a medicine, as well as DEA scheduling as compounds having no currently accepted medical use and a high potential for abuse. The distribution to the public of potent alkyl indole synthetic cannabimimetic chemicals without regard for consumer safety contrasts with the adherence to regulatory requirements for demonstration of safety that are routinely observed by ethical pharmaceutical companies that market medicines.


Asunto(s)
Cannabinoides/química , Cannabinoides/farmacología , Drogas de Diseño/química , Drogas de Diseño/farmacología , Analgésicos/química , Analgésicos/farmacología , Animales , Benzoxazinas/farmacología , Sitios de Unión , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología , Diseño de Fármacos , Humanos , Indoles/química , Indoles/farmacología , Ligandos , Morfolinas/farmacología , Naftalenos/farmacología , Receptor Cannabinoide CB1/agonistas , Receptor Cannabinoide CB1/química , Receptor Cannabinoide CB2/agonistas , Receptor Cannabinoide CB2/química , Electricidad Estática , Relación Estructura-Actividad
4.
Chem Res Toxicol ; 33(12): 2988-3000, 2020 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-33226218

RESUMEN

The non-nicotine constituents of tobacco may alter the reinforcing effects of nicotine, but the quantitative and qualitative profiles of these chemicals in tobacco products such as electronic cigarettes (e-cigarettes), cigars, and waterpipe tobacco are not well characterized. The objective of this work was to develop and validate analytical methods to utilize saline both as an extraction solvent for smoke condensates from cigarettes, little cigars, and waterpipe tobacco and aerosols from e-cigarettes and as a delivery vehicle of nicotine and non-nicotine constitents for nonclinical pharmacological studies. Ultrahigh-performance liquid chromatography was used to analyze nicotine and acetaldehyde, and a novel ultraperformance convergence chromatography-tandem mass spectrometry method was developed to analyze anabasine, anatabine, cotinine, myosmine, nornicotine, harmane, and norharmane. Linearity was confirmed for each standard curve with correlation coefficients (r) ≥ 0.99, and relative errors (RE) for the standards were ≤±10% over the calibration ranges. Method validation was performed by preparing triplicate samples in saline to mimic the composition and concentration of each analyte in the smoke or aerosol condensate and were used to determine method accuracy and precision. Relative standard deviation values were ≤15% and mean RE ≤15% for each analyte at each concentration level. Selectivity of the methods was demonstrated by the absence of peaks in blank vehicle or diluent samples. Storage stability was assessed over ∼45 days. Precision (%RSD ≤ 13) and recovery (percent of day 0 ≥ 80%) indicated that the saline formulations of all four products could be considered stable for up to ∼45 days at 4-8 °C. Therefore, the use of saline both as an extraction solvent and as a delivery vehicle adds versatility and improved performance in the study of the pharmacological effects of constituents from mainstream smoke and aerosols generated from cigarettes, little cigars, waterpipes, and e-cigarettes.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Nicotiana/química , Nicotina/análogos & derivados , Nicotina/análisis , Tabaco para Pipas de Agua/análisis , Cromatografía Líquida de Alta Presión , Estructura Molecular , Espectrometría de Masas en Tándem , Productos de Tabaco/análisis , Agua/química
5.
J Pharmacol Exp Ther ; 368(3): 414-422, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30552295

RESUMEN

Synthetic cannabinoids (SCs) are novel psychoactive substances that are easily acquired, widely abused as a substitute for cannabis, and associated with cardiotoxicity and seizures. Although the structural bases of these compounds are scaffolds with known affinity and efficacy at the human cannabinoid type-1 receptor (hCB1), upon ingestion or inhalation they can be metabolized to multiple chemical entities of unknown pharmacological activity. A large proportion of these metabolites are hydroxylated on the pentyl chain, a key substituent that determines receptor affinity and selectivity. Thus, the pharmacology of SC metabolites may be an important component in understanding the in vivo effects of SCs. We examined nine SCs (AB-PINACA, 5F-AB-PINACA, ADB/MDMB-PINACA, 5F-ADB, 5F-CUMYL-PINACA, AMB-PINACA, 5F-AMB, APINACA, and 5F-APINACA) and their hydroxypentyl (either 4-OH or 5-OH) metabolites in [3H]CP55,940 receptor binding and the [35S]GTPγS functional assay to determine the extent to which these metabolites retain activity at cannabinoid receptors. All of the SCs tested exhibited high affinity (<10 nM) and efficacy for hCB1 and hCB2 The majority of the hydroxypentyl metabolites retained full efficacy at hCB1 and hCB2, albeit with reduced affinity and potency, and exhibited greater binding selectivity for hCB2 These data suggest that phase I metabolites may be contributing to the in vivo pharmacology and toxicology of abused SCs. Considering this and previous reports demonstrating that metabolites retain efficacy at the hCB1 receptor, the full pharmacokinetic profiles of the parent compounds and their metabolites need to be considered in terms of the pharmacological effects and time course associated with these drugs.


Asunto(s)
Cannabinoides/metabolismo , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB2/metabolismo , Drogas Sintéticas/metabolismo , Cannabinoides/química , Cannabinoides/farmacología , Ciclohexanoles/química , Ciclohexanoles/metabolismo , Ciclohexanoles/farmacología , Relación Dosis-Respuesta a Droga , Células HEK293 , Humanos , Unión Proteica/fisiología , Receptor Cannabinoide CB1/agonistas , Receptor Cannabinoide CB2/agonistas , Drogas Sintéticas/química , Drogas Sintéticas/farmacología
6.
J Pharmacol Exp Ther ; 365(2): 437-446, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29549157

RESUMEN

Synthetic cannabinoids are a class of novel psychoactive substances that exhibit high affinity at the cannabinoid type-1 (CB1) receptor and produce effects similar to those of Δ-9-tetrahydrocannabinol (THC), the primary psychoactive constituent of cannabis. Illicit drug manufacturers are continually circumventing laws banning the sale of synthetic cannabinoids by synthesizing novel structures and doing so with little regard for the potential impact on pharmacological and toxicological effects. Synthetic cannabinoids produce a wide range of effects that include cardiotoxicity, seizure activity, and kidney damage, and they can cause death. Six synthetic cannabinoids, recently detected in illicit preparations, MMB-FUBINACA, MDMB-FUBINACA, CUMYL-PICA, 5F-CUMYL-PICA, NNEI, and MN-18 were assessed for: 1) receptor binding affinity at the human CB1 and human CB2 receptors, 2) function in [35S]GTPγS and cAMP signaling, and 3) THC-like effects in a mouse drug discrimination assay. All six synthetic cannabinoids exhibited high affinity for human cannabinoid receptors type-1 and type-2 and produced greater maximal effects than THC in [35S]GTPγS and cAMP signaling. Additionally, all six synthetic cannabinoids substituted for THC in drug discrimination, suggesting they probably possess subjective effects similar to those of cannabis. Notably, MDMB-FUBINACA, a methylated analog of MMB-FUBINACA, had higher affinity for CB1 than the parent, showing that minor structural modifications being introduced can have a large impact on the pharmacological properties of these drugs. This study demonstrates that novel structures being sold and used illicitly as substitutes for cannabis are retaining high affinity at the CB1 receptor, exhibiting greater efficacy than THC, and producing THC-like effects in models relevant to subjective effects in humans.


Asunto(s)
1-Naftilamina/análogos & derivados , Cannabinoides/farmacología , Indazoles/farmacología , 1-Naftilamina/farmacología , Animales , Células CHO , Cricetulus , AMP Cíclico/metabolismo , Células HEK293 , Humanos , Drogas Ilícitas/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB2/metabolismo , Transducción de Señal/efectos de los fármacos , Valina/análogos & derivados , Valina/farmacología
7.
Med Res Rev ; 37(3): 441-474, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-27879006

RESUMEN

The cannabinoid CB1 receptor is a G protein coupled receptor and plays an important role in many biological processes and physiological functions. A variety of CB1 receptor agonists and antagonists, including endocannabinoids, phytocannabinoids, and synthetic cannabinoids, have been discovered or developed over the past 20 years. In 2005, it was discovered that the CB1 receptor contains allosteric site(s) that can be recognized by small molecules or allosteric modulators. A number of CB1 receptor allosteric modulators, both positive and negative, have since been reported and importantly, they display pharmacological characteristics that are distinct from those of orthosteric agonists and antagonists. Given the psychoactive effects commonly associated with CB1 receptor agonists and antagonists/inverse agonists, allosteric modulation may offer an alternate approach to attain potential therapeutic benefits while avoiding inherent side effects of orthosteric ligands. This review details the complex pharmacological profiles of these allosteric modulators, their structure-activity relationships, and efforts in elucidating binding modes and mechanisms of actions of reported CB1 allosteric modulators. The ultimate development of CB1 receptor allosteric ligands could potentially lead to improved therapies for CB1-mediated neurological disorders.


Asunto(s)
Receptor Cannabinoide CB1/metabolismo , Regulación Alostérica , Animales , Humanos , Relación Estructura-Actividad
8.
J Pharmacol Exp Ther ; 361(1): 162-171, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28087785

RESUMEN

Synthetic cannabinoids are manufactured clandestinely with little quality control and are distributed as herbal "spice" for smoking or as bulk compound for mixing with a solvent and inhalation via electronic vaporizers. Intoxication with synthetic cannabinoids has been associated with seizure, excited delirium, coma, kidney damage, and other disorders. The chemical alterations produced by heating these structurally novel compounds for consumption are largely unknown. Here, we show that heating synthetic cannabinoids containing tetramethylcyclopropyl-ring substituents produced thermal degradants with pharmacological activity that varied considerably from their parent compounds. Moreover, these degradants were formed under conditions simulating smoking. Some products of combustion retained high affinity at the cannabinoid 1 (CB1) and CB2 receptors, were more efficacious than (-)-cis-3-[2-hydroxy-4-(1,1-dimethylheptyl)phenyl]-trans-4-(3-hydroxypropyl)cyclohexanol (CP55,940) in stimulating CB1 receptor-mediated guanosine 5'-O-(3-thiotriphosphate) (GTPγS) binding, and were potent in producing Δ9-tetrahydrocannabinol-like effects in laboratory animals, whereas other compounds had low affinity and efficacy and were devoid of cannabimimetic activity. Degradants that retained affinity and efficacy also substituted in drug discrimination tests for the prototypical synthetic cannabinoid 1-pentyl-3-(1-naphthoyl)indole (JWH-018), and are likely to produce psychotropic effects in humans. Hence, it is important to take into consideration the actual chemical exposures that occur during use of synthetic cannabinoid formulations to better comprehend the relationships between dose and effect.


Asunto(s)
Cannabinoides/metabolismo , Calor/efectos adversos , Indoles/metabolismo , Naftalenos/metabolismo , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB2/metabolismo , Animales , Cannabinoides/síntesis química , Cannabinoides/farmacología , Drogas de Diseño/síntesis química , Drogas de Diseño/metabolismo , Drogas de Diseño/farmacología , Relación Dosis-Respuesta a Droga , Dronabinol/síntesis química , Dronabinol/metabolismo , Dronabinol/farmacología , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Unión Proteica/efectos de los fármacos , Unión Proteica/fisiología , Receptor Cannabinoide CB1/agonistas , Receptor Cannabinoide CB2/agonistas
9.
J Pharmacol Exp Ther ; 354(3): 328-39, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26105953

RESUMEN

Diversion of synthetic cannabinoids for abuse began in the early 2000s. Despite legislation banning compounds currently on the drug market, illicit manufacturers continue to release new compounds for recreational use. This study examined new synthetic cannabinoids, AB-CHMINACA (N-[1-amino-3-methyl-oxobutan-2-yl]-1-[cyclohexylmethyl]-1H-indazole-3-carboxamide), AB-PINACA [N-(1-amino-3-methyl-1-oxobutan-2-yl)-1-pentyl-1H-indazole-3-carboxamide], and FUBIMINA [(1-(5-fluoropentyl)-1H-benzo[d]imadazol-2-yl)(naphthalen-1-yl)methanone], with the hypothesis that these compounds, like those before them, would be highly susceptible to abuse. Cannabinoids were examined in vitro for binding and activation of CB1 receptors, and in vivo for pharmacological effects in mice and in Δ(9)-tetrahydrocannabinol (Δ(9)-THC) discrimination. AB-CHMINACA, AB-PINACA, and FUBIMINA bound to and activated CB1 and CB2 receptors, and produced locomotor suppression, antinociception, hypothermia, and catalepsy. Furthermore, these compounds, along with JWH-018 [1-pentyl-3-(1-naphthoyl)indole], CP47,497 [rel-5-(1,1-dimethylheptyl)-2-[(1R,3S)-3-hydroxycyclohexyl]-phenol], and WIN55,212-2 ([(3R)-2,3-dihydro-5-methyl-3-(4-morpholinylmethyl)pyrrolo[1,2,3-de]-1,4-benzoxazin-6-yl]-1-naphthalenyl-methanone, monomethanesulfonate), substituted for Δ(9)-THC in Δ(9)-THC discrimination. Rank order of potency correlated with CB1 receptor-binding affinity, and all three compounds were full agonists in [(35)S]GTPγS binding, as compared with the partial agonist Δ(9)-THC. Indeed, AB-CHMINACA and AB-PINACA exhibited higher efficacy than most known full agonists of the CB1 receptor. Preliminary analysis of urinary metabolites of the compounds revealed the expected hydroxylation. AB-PINACA and AB-CHMINACA are of potential interest as research tools due to their unique chemical structures and high CB1 receptor efficacies. Further studies on these chemicals are likely to include research on understanding cannabinoid receptors and other components of the endocannabinoid system that underlie the abuse of synthetic cannabinoids.


Asunto(s)
Cannabinoides/farmacología , Dronabinol/farmacología , Drogas Ilícitas/farmacología , Analgésicos/farmacología , Animales , Catalepsia/inducido químicamente , Endocannabinoides/metabolismo , Hidroxilación/efectos de los fármacos , Hipotermia/inducido químicamente , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Actividad Motora/efectos de los fármacos , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB2/metabolismo
10.
J Cardiovasc Pharmacol ; 65(5): 473-9, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25636077

RESUMEN

As they age, Sprague-Dawley (SD) rats develop elevated systolic blood pressure associated with impaired baroreflex sensitivity (BRS) for control of heart rate. We previously demonstrated in young hypertensive (mRen2)27 rats that impaired BRS is restored by CB1 cannabinoid receptor blockade in the solitary tract nucleus (NTS), consistent with elevated content of the endocannabinoid 2-arachidonoylglycerol (2-AG) in dorsal medulla relative to normotensive SD rats. There is no effect of CB1 receptor blockade in young SD rats. We now report in older SD rats that dorsal medullary 2-AG levels are 2-fold higher at 70 versus 15 weeks of age (4.22 ± 0.61 vs. 1.93 ± 0.22 ng/mg tissue; P < 0.05). Furthermore, relative expression of CB1 receptor messenger RNA is significantly lower in aged rats, whereas CB2 receptor messenger RNA is significantly higher. In contrast to young adult SD rats, microinjection of the CB1 receptor antagonist SR141716A (36 pmole) into the NTS of older SD rats normalized BRS in animals exhibiting impaired baseline BRS (0.56 ± 0.06 baseline vs. 1.06 ± 0.05 ms/mm Hg after 60 minutes; P < 0.05). Therefore, this study provides evidence for alterations in the endocannabinoid system within the NTS of older SD rats that contribute to age-related impairment of BRS.


Asunto(s)
Envejecimiento/metabolismo , Barorreflejo , Endocannabinoides/metabolismo , Núcleo Solitario/metabolismo , Factores de Edad , Envejecimiento/genética , Animales , Ácidos Araquidónicos/metabolismo , Barorreflejo/efectos de los fármacos , Presión Sanguínea , Antagonistas de Receptores de Cannabinoides/administración & dosificación , Regulación de la Expresión Génica , Glicéridos/metabolismo , Frecuencia Cardíaca , Masculino , Espectrometría de Masas , Microinyecciones , Piperidinas/administración & dosificación , Pirazoles/administración & dosificación , ARN Mensajero/metabolismo , Ratas Sprague-Dawley , Receptor Cannabinoide CB1/genética , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB2/genética , Receptor Cannabinoide CB2/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Rimonabant , Núcleo Solitario/efectos de los fármacos
11.
Bioorg Med Chem ; 23(17): 5709-24, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26216017

RESUMEN

Selective antagonism of the orexin 1 (OX1) receptor has been proposed as a potential mechanism for treatment of drug addiction. We have previously reported studies on the structure-activity relationships of tetrahydroisoquinoline-based antagonists. In this report, we elucidated the respective role of the 6- and 7-substitutions by preparation of a series of either 6-substituted tetrahydroisoquinolines (with no 7-substituents) or vice versa. We found that 7-substituted tetrahydroisoquinolines showed potent antagonism of OX1, indicating that the 7-position is important for OX1 antagonism (10 c, Ke = 23.7 nM). While the 6-substituted analogs were generally inactive, several 6-amino compounds bearing ester groups showed reasonable potency (26 a, Ke = 427 nM). Further, we show evidence that suggests several compounds initially displaying insurmountable antagonism at the OX1 receptor are competitive antagonists with slow dissociation rates.


Asunto(s)
Orexinas/genética , Tetrahidroisoquinolinas/metabolismo , Humanos , Estructura Molecular , Relación Estructura-Actividad
12.
Bioorg Med Chem ; 23(9): 2195-2203, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25797163

RESUMEN

A series of substituted 1H-indole-2-carboxamides structurally related to compounds Org27569 (1), Org29647 (2) and Org27759 (3) were synthesized and evaluated for CB1 allosteric modulating activity in calcium mobilization assays. Structure-activity relationship studies showed that the modulation potency of this series at the CB1 receptor was enhanced by the presence of a diethylamino group at the 4-position of the phenyl ring, a chloro or fluoro group at the C5 position and short alkyl groups at the C3 position on the indole ring. The most potent compound (45) had an IC50 value of 79 nM which is ∼2.5 and 10 fold more potent than the parent compounds 3 and 1, respectively. These compounds appeared to be negative allosteric modulators at the CB1 receptor and dose-dependently reduced the Emax of agonist CP55,940. These analogs may provide the basis for further optimization and use of CB1 allosteric modulators.


Asunto(s)
Regulación Alostérica/efectos de los fármacos , Amidas/farmacología , Indoles/farmacología , Receptor Cannabinoide CB1/antagonistas & inhibidores , Amidas/síntesis química , Amidas/química , Animales , Células CHO , Cricetulus , Relación Dosis-Respuesta a Droga , Humanos , Indoles/síntesis química , Indoles/química , Estructura Molecular , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB2/antagonistas & inhibidores , Receptor Cannabinoide CB2/metabolismo , Relación Estructura-Actividad
13.
Nicotine Tob Res ; 17(3): 368-71, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25271188

RESUMEN

INTRODUCTION: While nicotine has been established as the primary addictive drug that promotes tobacco use, recent peer-reviewed studies suggest that tobacco smoke contains additional chemical constituents that may have addictive potential. Additional research is necessary to determine the addictive potential of these tobacco constituents individually and in combination with tobacco smoke condensate; however, the behaviorally effective constituent doses necessary to conduct such studies are unclear. The primary objective of this study was to conduct behavioral studies in adult rats to determine the relevant behaviorally effective doses of the tobacco constituents, cotinine, myosmine, and anatabine to be used in future studies assessing the addictive potential of these compounds. METHODS: Separate groups of adult male Sprague Dawley rats were treated with vehicle, nicotine, or various doses of cotinine, mysomine, or anatabine. Effects on locomotor activity were measured in 10-min bins for 60min. RESULTS: Nicotine (0.8mg/kg) produced a biphasic effect on locomotor activity, with hypoactivity during the first 10min and hyperactivity at 40-50min. In contrast, cotinine (0.1mg/kg) and myosmine (10-50mg/kg) decreased activity without a later increase. Anatabine significantly increased locomotor activity at 1mg/kg, but decreased it at 10mg/kg. Prominent effects on overt behavior were observed at anatabine doses of 10mg/kg and above. CONCLUSION: Nicotine, cotinine, myosmine, and anatabine produced distinct time- and dose-dependent patterns of effects on locomotor activity. Results from the study will aid in the selection of relevant doses for future studies assessing the addictive potential of these non-nicotine tobacco constituents.


Asunto(s)
Alcaloides/farmacología , Cotinina/farmacología , Nicotiana , Nicotina/farmacología , Piridinas/farmacología , Animales , Relación Dosis-Respuesta a Droga , Masculino , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Ratas , Ratas Sprague-Dawley , Nicotiana/química
14.
Water Resour Res ; 51(7): 5198-5216, 2015 07.
Artículo en Inglés | MEDLINE | ID: mdl-26900184

RESUMEN

Groundwater resilience is defined and quantified with remote sensing from GRACETimescales of aquifer depletion are assessed as a Total Groundwater Stress ratioThe volume of usable global groundwater storage is found to be largely unknown.

15.
Water Resour Res ; 51(7): 5217-5238, 2015 07.
Artículo en Inglés | MEDLINE | ID: mdl-26900185

RESUMEN

Renewable groundwater stress is quantified in the world's largest aquifersCharacteristic stress regimes are defined to determine the severity of stressOverstressed aquifers are mainly in rangeland biomes with some croplands.

16.
Geophys Res Lett ; 41(16): 5904-5911, 2014 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-25821273

RESUMEN

Streamflow of the Colorado River Basin is the most overallocated in the world. Recent assessment indicates that demand for this renewable resource will soon outstrip supply, suggesting that limited groundwater reserves will play an increasingly important role in meeting future water needs. Here we analyze 9 years (December 2004 to November 2013) of observations from the NASA Gravity Recovery and Climate Experiment mission and find that during this period of sustained drought, groundwater accounted for 50.1 km3 of the total 64.8 km3 of freshwater loss. The rapid rate of depletion of groundwater storage (-5.6 ± 0.4 km3 yr-1) far exceeded the rate of depletion of Lake Powell and Lake Mead. Results indicate that groundwater may comprise a far greater fraction of Basin water use than previously recognized, in particular during drought, and that its disappearance may threaten the long-term ability to meet future allocations to the seven Basin states.

17.
Addict Biol ; 19(2): 165-74, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22784198

RESUMEN

Reports of abuse and toxic effects of synthetic cathinones, frequently sold as 'bath salts' or 'legal highs', have increased dramatically in recent years. One of the most widely used synthetic cathinones is 3,4-methylenedioxypyrovalerone (MDPV). The current study evaluated the abuse potential of MDPV by assessing its ability to support intravenous self-administration and to lower thresholds for intracranial self-stimulation (ICSS) in rats. In the first experiment, the rats were trained to intravenously self-administer MDPV in daily 2-hour sessions for 10 days at doses of 0.05, 0.1 or 0.2 mg/kg per infusion. The rats were then allowed to self-administer MDPV under a progressive ratio (PR) schedule of reinforcement. Next, the rats self-administered MDPV for an additional 10 days under short access (ShA; 2 hours/day) or long access (LgA; 6 hours/day) conditions to assess escalation of intake. A separate group of rats underwent the same procedures, with the exception of self-administering methamphetamine (0.05 mg/kg per infusion) instead of MDPV. In the second experiment, the effects of MDPV on ICSS thresholds following acute administration (0.1, 0.5, 1 and 2 mg/kg, i.p.) were assessed. MDPV maintained self-administration across all doses tested. A positive relationship between MDPV dose and breakpoints for reinforcement under PR conditions was observed. LgA conditions led to escalation of drug intake at 0.1 and 0.2 mg/kg doses, and rats self-administering methamphetamine showed similar patterns of escalation. Finally, MDPV significantly lowered ICSS thresholds at all doses tested. Together, these findings indicate that MDPV has reinforcing properties and activates brain reward circuitry, suggesting a potential for abuse and addiction in humans.


Asunto(s)
Benzodioxoles/farmacología , Drogas de Diseño/farmacología , Comportamiento de Búsqueda de Drogas/efectos de los fármacos , Pirrolidinas/farmacología , Refuerzo en Psicología , Recompensa , Autoadministración/estadística & datos numéricos , Análisis de Varianza , Animales , Benzodioxoles/administración & dosificación , Estimulantes del Sistema Nervioso Central/administración & dosificación , Drogas de Diseño/administración & dosificación , Relación Dosis-Respuesta a Droga , Estimulación Eléctrica/métodos , Infusiones Intravenosas , Masculino , Metanfetamina/administración & dosificación , Pirrolidinas/administración & dosificación , Ratas , Ratas Sprague-Dawley , Esquema de Refuerzo , Autoestimulación/efectos de los fármacos , Trastornos Relacionados con Sustancias/psicología , Factores de Tiempo , Cathinona Sintética
18.
Nicotine Tob Res ; 15(6): 1113-21, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23178320

RESUMEN

INTRODUCTION: Experimental cigarettes are needed to conduct studies examining the effects of varying doses of nicotine content on smoking behavior. The National Institute on Drug Abuse contracted with Research Triangle Institute to make such cigarettes available to researchers. The goal of this study was to determine whether cigarettes that vary in nicotine content produce an expected dose-response effect. METHOD: Two studies were conducted. The first study recruited subjects from 3 sites and consisted of a single, within-subject laboratory session. Subjects first smoked 4 puffs on their usual-brand cigarette and then in double-blind, random-order, smoked 4 puffs on each experimental cigarette that contained either low nicotine (LN, 0.4 mg/g), intermediate nicotine (IN, 5.7-5.8 mg/g), or high nicotine (HN, 11.4-12.8 mg/g). Each puffing bout was separated by a 30-min interval. Subjects completed questionnaires and were assessed for vital signs after each cigarette. The second study involved 1 site and used a between-subject design in which subjects were assigned to 1 of the 3 experimental cigarettes for 1 week. Subjective responses and biomarkers of exposure were assessed. RESULTS: In the first study, significant dose-response effects were observed, particularly between the LN and HN cigarettes. The second study showed decreases in cigarette smoking and exposure biomarkers predominantly in the LN group, with no changes in the HN cigarette group. CONCLUSIONS: These results are similar to those observed in prior literature, confirming that these experimental cigarettes can be used safely and with the expected pharmacological effects.


Asunto(s)
Nicotina/farmacología , Cese del Hábito de Fumar/psicología , Fumar/psicología , Productos de Tabaco/clasificación , Adolescente , Adulto , Conducta/efectos de los fármacos , Presión Sanguínea/efectos de los fármacos , Cotinina/orina , Demografía , Relación Dosis-Respuesta a Droga , Método Doble Ciego , Femenino , Frecuencia Cardíaca/efectos de los fármacos , Humanos , Masculino , Persona de Mediana Edad , Nicotina/administración & dosificación , Nicotina/orina , Proyectos Piloto , Encuestas y Cuestionarios , Productos de Tabaco/análisis , Dispositivos para Dejar de Fumar Tabaco , Adulto Joven
19.
Sci Total Environ ; 879: 162958, 2023 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-36963685

RESUMEN

Observing basin water storage response due to hydroclimatic fluxes and human water use provides valuable insight to the sensitivity of water storage to climate change. Quantifying basin water storage changes due to climate and human water use is critical for water management yet remains a challenge globally. Observations from the Gravity Recovery and Climate Experiment (GRACE) mission are used to extract monthly available water (AW), representing the combined storage changes from groundwater and surface water stores. AW is combined with hydroclimatic fluxes, including precipitation (P) and evapotranspiration (ET) to quantify the hydroclimatic elasticity of AW for global basins. Our results detect consequential global water sensitivity to changes in hydroclimatic fluxes, where 25 % of land areas exhibit hydroclimatic elasticity of AW >10, implying that a 1 % change in monthly P-ET would result in a 10 % change in AW. Corroboration using a Budyko-derived metric substantiates our findings, demonstrating that basin water storage resilience to short-term water deficits is linked to basin partitioning predictability, and uniform seasonality of hydroclimatic fluxes. Our study demonstrates how small shifts in hydroclimate flux may affect available water storage potentially impacting billions globally.

20.
J Neurodev Disord ; 15(1): 1, 2023 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-36624400

RESUMEN

Multiple lines of evidence suggest a central role for the endocannabinoid system (ECS) in the neuronal development and cognitive function and in the pathogenesis of fragile X syndrome (FXS). This review describes the ECS, its role in the central nervous system, how it is dysregulated in FXS, and the potential role of cannabidiol as a treatment for FXS. FXS is caused by deficiency or absence of the fragile X messenger ribonucleoprotein 1 (FMR1) protein, FMRP, typically due to the presence of >200 cytosine, guanine, guanine sequence repeats leading to methylation of the FMR1 gene promoter. The absence of FMRP, following FMR1 gene-silencing, disrupts ECS signaling, which has been implicated in FXS pathogenesis. The ECS facilitates synaptic homeostasis and plasticity through the cannabinoid receptor 1, CB1, on presynaptic terminals, resulting in feedback inhibition of neuronal signaling. ECS-mediated feedback inhibition and synaptic plasticity are thought to be disrupted in FXS, leading to overstimulation, desensitization, and internalization of presynaptic CB1 receptors. Cannabidiol may help restore synaptic homeostasis by acting as a negative allosteric modulator of CB1, thereby attenuating the receptor overstimulation, desensitization, and internalization. Moreover, cannabidiol affects DNA methylation, serotonin 5HT1A signal transduction, gamma-aminobutyric acid receptor signaling, and dopamine D2 and D3 receptor signaling, which may contribute to beneficial effects in patients with FXS. Consistent with these proposed mechanisms of action of cannabidiol in FXS, in the CONNECT-FX trial the transdermal cannabidiol gel, ZYN002, was associated with improvements in measures of social avoidance, irritability, and social interaction, particularly in patients who are most affected, showing ≥90% methylation of the FMR1 gene.


Asunto(s)
Cannabidiol , Síndrome del Cromosoma X Frágil , Humanos , Síndrome del Cromosoma X Frágil/tratamiento farmacológico , Síndrome del Cromosoma X Frágil/genética , Cannabidiol/farmacología , Cannabidiol/uso terapéutico , Endocannabinoides/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA