RESUMEN
Interferon-induced transmembrane protein 3 (IFITM3) is an antiviral protein that alters cell membranes to block fusion of viruses. Conflicting reports identified opposing effects of IFITM3 on SARS-CoV-2 infection of cells, and its impact on viral pathogenesis in vivo remains unclear. Here, we show that IFITM3 knockout (KO) mice infected with SARS-CoV-2 experience extreme weight loss and lethality compared to mild infection in wild-type (WT) mice. KO mice have higher lung viral titers and increases in inflammatory cytokine levels, immune cell infiltration, and histopathology. Mechanistically, we observe disseminated viral antigen staining throughout the lung and pulmonary vasculature in KO mice, as well as increased heart infection, indicating that IFITM3 constrains dissemination of SARS-CoV-2. Global transcriptomic analysis of infected lungs shows upregulation of gene signatures associated with interferons, inflammation, and angiogenesis in KO versus WT animals, highlighting changes in lung gene expression programs that precede severe lung pathology and fatality. Our results establish IFITM3 KO mice as a new animal model for studying severe SARS-CoV-2 infection and overall demonstrate that IFITM3 is protective in SARS-CoV-2 infections in vivo.
Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Ratones , COVID-19/genética , Interferones/genética , Pulmón , Ratones NoqueadosRESUMEN
Severe acute respiratory syndrome coronavirus 2 (SARSCoV-2) is a worldwide health concern, and new treatment strategies are needed. Targeting inflammatory innate immunity pathways holds therapeutic promise, but effective molecular targets remain elusive. Here, we show that human caspase-4 (CASP4) and its mouse homolog, caspase-11 (CASP11), are up-regulated in SARSCoV-2 infections and that CASP4 expression correlates with severity of SARSCoV-2 infection in humans. SARSCoV-2infected Casp11−/− mice were protected from severe weight loss and lung pathology, including blood vessel damage, compared to wild-type (WT) mice and mice lacking the caspase downstream effector gasdermin-D (Gsdmd−/−). Notably, viral titers were similar regardless of CASP11 knockout. Global transcriptomics of SARSCoV-2infected WT, Casp11−/−, and Gsdmd−/− lungs identified restrained expression of inflammatory molecules and altered neutrophil gene signatures in Casp11−/− mice. We confirmed that protein levels of inflammatory mediators interleukin (IL)-1ß, IL-6, and CXCL1, as well as neutrophil functions, were reduced in Casp11−/− lungs. Additionally, Casp11−/− lungs accumulated less von Willebrand factor, a marker for endothelial damage, but expressed more Kruppel-Like Factor 2, a transcription factor that maintains vascular integrity. Overall, our results demonstrate that CASP4/11 promotes detrimental SARSCoV-2induced inflammation and coagulopathy, largely independently of GSDMD, identifying CASP4/11 as a promising drug target for treatment and prevention of severe COVID-19.
Asunto(s)
COVID-19 , Caspasas Iniciadoras/metabolismo , SARS-CoV-2 , Tromboinflamación , Animales , COVID-19/enzimología , COVID-19/patología , Caspasas Iniciadoras/genética , Progresión de la Enfermedad , Humanos , Pulmón/patología , Ratones , Ratones Noqueados , Índice de Severidad de la Enfermedad , Tromboinflamación/enzimología , Tromboinflamación/genéticaRESUMEN
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a historic pandemic of respiratory disease (coronavirus disease 2019 [COVID-19]), and current evidence suggests that severe disease is associated with dysregulated immunity within the respiratory tract. However, the innate immune mechanisms that mediate protection during COVID-19 are not well defined. Here, we characterize a mouse model of SARS-CoV-2 infection and find that early CCR2 signaling restricts the viral burden in the lung. We find that a recently developed mouse-adapted SARS-CoV-2 (MA-SARS-CoV-2) strain as well as the emerging B.1.351 variant trigger an inflammatory response in the lung characterized by the expression of proinflammatory cytokines and interferon-stimulated genes. Using intravital antibody labeling, we demonstrate that MA-SARS-CoV-2 infection leads to increases in circulating monocytes and an influx of CD45+ cells into the lung parenchyma that is dominated by monocyte-derived cells. Single-cell RNA sequencing (scRNA-Seq) analysis of lung homogenates identified a hyperinflammatory monocyte profile. We utilize this model to demonstrate that mechanistically, CCR2 signaling promotes the infiltration of classical monocytes into the lung and the expansion of monocyte-derived cells. Parenchymal monocyte-derived cells appear to play a protective role against MA-SARS-CoV-2, as mice lacking CCR2 showed higher viral loads in the lungs, increased lung viral dissemination, and elevated inflammatory cytokine responses. These studies have identified a potential CCR2-monocyte axis that is critical for promoting viral control and restricting inflammation within the respiratory tract during SARS-CoV-2 infection. IMPORTANCE SARS-CoV-2 has caused a historic pandemic of respiratory disease (COVID-19), and current evidence suggests that severe disease is associated with dysregulated immunity within the respiratory tract. However, the innate immune mechanisms that mediate protection during COVID-19 are not well defined. Here, we characterize a mouse model of SARS-CoV-2 infection and find that early CCR2-dependent infiltration of monocytes restricts the viral burden in the lung. We find that SARS-CoV-2 triggers an inflammatory response in the lung characterized by the expression of proinflammatory cytokines and interferon-stimulated genes. Using RNA sequencing and flow cytometry approaches, we demonstrate that SARS-CoV-2 infection leads to increases in circulating monocytes and an influx of CD45+ cells into the lung parenchyma that is dominated by monocyte-derived cells. Mechanistically, CCR2 signaling promoted the infiltration of classical monocytes into the lung and the expansion of monocyte-derived cells. Parenchymal monocyte-derived cells appear to play a protective role against MA-SARS-CoV-2, as mice lacking CCR2 showed higher viral loads in the lungs, increased lung viral dissemination, and elevated inflammatory cytokine responses. These studies have identified that the CCR2 pathway is critical for promoting viral control and restricting inflammation within the respiratory tract during SARS-CoV-2 infection.
Asunto(s)
Pulmón/inmunología , Neumonía Viral/prevención & control , Receptores CCR2/inmunología , SARS-CoV-2/inmunología , Transducción de Señal/inmunología , Animales , COVID-19 , Citocinas/inmunología , Modelos Animales de Enfermedad , Femenino , Inmunidad Innata , Inflamación , Pulmón/citología , Pulmón/virología , Ratones , Ratones Endogámicos C57BL , Monocitos/inmunología , Neumonía Viral/inmunología , Neumonía Viral/virología , Receptores CCR2/genética , Receptores CCR2/metabolismo , SARS-CoV-2/genética , Carga Viral , Replicación Viral/inmunologíaRESUMEN
SARS-CoV-2 has caused a historic pandemic of respiratory disease (COVID-19) and current evidence suggests severe disease is associated with dysregulated immunity within the respiratory tract. However, the innate immune mechanisms that mediate protection during COVID-19 are not well defined. Here we characterize a mouse model of SARS-CoV-2 infection and find that early CCR2-dependent infiltration of monocytes restricts viral burden in the lung. We find that a recently developed mouse-adapted MA-SARS-CoV-2 strain, as well as the emerging B. 1.351 variant, trigger an inflammatory response in the lung characterized by expression of pro-inflammatory cytokines and interferon-stimulated genes. scRNA-seq analysis of lung homogenates identified a hyper-inflammatory monocyte profile. Using intravital antibody labeling, we demonstrate that MA-SARS-CoV-2 infection leads to increases in circulating monocytes and an influx of CD45+ cells into the lung parenchyma that is dominated by monocyte-derived cells. We utilize this model to demonstrate that mechanistically, CCR2 signaling promotes infiltration of classical monocytes into the lung and expansion of monocyte-derived cells. Parenchymal monocyte-derived cells appear to play a protective role against MA-SARS-CoV-2, as mice lacking CCR2 showed higher viral loads in the lungs, increased lung viral dissemination, and elevated inflammatory cytokine responses. These studies have identified a CCR2-monocyte axis that is critical for promoting viral control and restricting inflammation within the respiratory tract during SARS-CoV-2 infection.
RESUMEN
Prostate cancer affects African Americans disproportionately by exhibiting greater incidence, rapid disease progression, and higher mortality when compared to their Caucasian counterparts. Additionally, standard treatment interventions do not achieve similar outcome in African Americans compared to Caucasian Americans, indicating differences in host factors contributing to racial disparity. African Americans have allelic variants and hyper-expression of genes that often lead to an immunosuppressive tumor microenvironment, possibly contributing to more aggressive tumors and poorer disease and therapeutic outcomes than Caucasians. In this review, we have discussed race-specific differences in external factors impacting internal milieu, which modify immunological topography as well as contribute to disparity in prostate cancer.
RESUMEN
Despite recent advances, breast cancer (BrCa) still affects many women and the impact is disproportional in African Americans (AA) compared to European Americans (EA). Addressing socioeconomic and behavioral status has not been enough to reduce disparity, suggesting contribution of biological differences in BrCa disparity. Our laboratory was first to show involvement of CC chemokines in BrCa. In this study, using ONCOMINE, TCGA, bc-GenExMiner and KMplotter, we examined the association of CC chemokines in BrCa outcomes and disparity. We show over-expression of CCL5, -7, -11, -17, -20, -22 and -25 in BrCa tissues. High mRNA levels of CCL7, -8, -17, -20 and -25 predicted a decrease in overall survival (OS). CCL7 and CCL8 were associated with decreased relapse-free survival. Expression of CCL17 and CCL25 was associated with decreased OS in AA. In EA, CCL8 was associated with decreased OS. Expression of CCL5, -7, -8, -17, -20 and -25 was highest in TNBC. Expression of CCL11 and CCL22 was associated with HER2. CCL7, -8, -17, -20 and -25 were elevated in AAs. In conclusion, our analysis suggests significant association of CC-chemokines in BrCa progression, OS and disparate disease outcome in AA compared to EA patients.