Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
J Biol Chem ; 299(1): 102777, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36496072

RESUMEN

Long QT syndrome (LQTS) is a human inherited heart condition that can cause life-threatening arrhythmia including sudden cardiac death. Mutations in the ubiquitous Ca2+-sensing protein calmodulin (CaM) are associated with LQTS, but the molecular mechanism by which these mutations lead to irregular heartbeats is not fully understood. Here, we use a multidisciplinary approach including protein biophysics, structural biology, confocal imaging, and patch-clamp electrophysiology to determine the effect of the disease-associated CaM mutation E140G on CaM structure and function. We present novel data showing that mutant-regulated CaMKIIδ kinase activity is impaired with a significant reduction in enzyme autophosphorylation rate. We report the first high-resolution crystal structure of a LQTS-associated CaM variant in complex with the CaMKIIδ peptide, which shows significant structural differences, compared to the WT complex. Furthermore, we demonstrate that the E140G mutation significantly disrupted Cav1.2 Ca2+/CaM-dependent inactivation, while cardiac ryanodine receptor (RyR2) activity remained unaffected. In addition, we show that the LQTS-associated mutation alters CaM's Ca2+-binding characteristics, secondary structure content, and interaction with key partners involved in excitation-contraction coupling (CaMKIIδ, Cav1.2, RyR2). In conclusion, LQTS-associated CaM mutation E140G severely impacts the structure-function relationship of CaM and its regulation of CaMKIIδ and Cav1.2. This provides a crucial insight into the molecular factors contributing to CaM-mediated arrhythmias with a central role for CaMKIIδ.


Asunto(s)
Canales de Calcio Tipo L , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Calmodulina , Síndrome de QT Prolongado , Humanos , Arritmias Cardíacas/genética , Arritmias Cardíacas/fisiopatología , Calcio/metabolismo , Canales de Calcio Tipo L/genética , Canales de Calcio Tipo L/metabolismo , Calmodulina/genética , Calmodulina/metabolismo , Síndrome de QT Prolongado/genética , Miocitos Cardíacos/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Mutación , Estructura Secundaria de Proteína/genética , Unión Proteica/genética , Cristalografía
2.
J Cell Sci ; 135(2)2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-34888671

RESUMEN

Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an inherited condition that can cause fatal cardiac arrhythmia. Human mutations in the Ca2+ sensor calmodulin (CaM) have been associated with CPVT susceptibility, suggesting that CaM dysfunction is a key driver of the disease. However, the detailed molecular mechanism remains unclear. Focusing on the interaction with the cardiac ryanodine receptor (RyR2), we determined the effect of CPVT-associated variants N53I and A102V on the structural characteristics of CaM and on Ca2+ fluxes in live cells. We provide novel data showing that interaction of both Ca2+/CaM-N53I and Ca2+/CaM-A102V with the RyR2 binding domain is decreased. Ca2+/CaM-RyR23583-3603 high-resolution crystal structures highlight subtle conformational changes for the N53I variant, with A102V being similar to wild type (WT). We show that co-expression of CaM-N53I or CaM-A102V with RyR2 in HEK293 cells significantly increased the duration of Ca2+ events; CaM-A102V exhibited a lower frequency of Ca2+ oscillations. In addition, we show that CaMKIIδ (also known as CAMK2D) phosphorylation activity is increased for A102V, compared to CaM-WT. This paper provides novel insight into the molecular mechanisms of CPVT-associated CaM variants and will facilitate the development of strategies for future therapies.


Asunto(s)
Calmodulina , Taquicardia Ventricular , Calcio/metabolismo , Calmodulina/genética , Calmodulina/metabolismo , Células HEK293 , Humanos
3.
J Cell Sci ; 129(21): 3983-3988, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27609834

RESUMEN

Cardiac muscle contraction requires sarcoplasmic reticulum (SR) Ca2+ release mediated by the quaternary complex comprising the ryanodine receptor 2 (RyR2), calsequestrin 2 (CSQ2), junctin (encoded by ASPH) and triadin. Here, we demonstrate that a direct interaction exists between RyR2 and CSQ2. Topologically, CSQ2 binding occurs at the first luminal loop of RyR2. Co-expression of RyR2 and CSQ2 in a human cell line devoid of the other quaternary complex proteins results in altered Ca2+-release dynamics compared to cells expressing RyR2 only. These findings provide a new perspective for understanding the SR luminal Ca2+ sensor and its involvement in cardiac physiology and disease.


Asunto(s)
Calsecuestrina/metabolismo , Miocardio/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Calcio/metabolismo , Células HEK293 , Humanos , Espacio Intracelular/metabolismo , Unión Proteica , Dominios Proteicos , Mapeo de Interacción de Proteínas , Estructura Secundaria de Proteína , Canal Liberador de Calcio Receptor de Rianodina/química
4.
Circ Res ; 116(8): 1324-35, 2015 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-25648700

RESUMEN

RATIONALE: Flecainide, a class 1c antiarrhythmic, has emerged as an effective therapy in preventing arrhythmias in patients with catecholaminergic polymorphic ventricular tachycardia (CPVT) refractory to ß-adrenergic receptor blockade. It has been proposed that the clinical efficacy of flecainide in CPVT is because of the combined actions of direct blockade of ryanodine receptors (RyR2) and Na(+) channel inhibition. However, there is presently no direct evidence to support the notion that flecainide blocks RyR2 Ca(2+) flux in the physiologically relevant (luminal-to-cytoplasmic) direction. The mechanism of flecainide action remains controversial. OBJECTIVE: To examine, in detail, the effect of flecainide on the human RyR2 channel and to establish whether the direct blockade of physiologically relevant RyR2 ion flow by the drug contributes to its therapeutic efficacy in the clinical management of CPVT. METHODS AND RESULTS: Using single-channel analysis, we show that, even at supraphysiological concentrations, flecainide did not inhibit the physiologically relevant, luminal-to-cytosolic flux of cations through the channel. Moreover, flecainide did not alter RyR2 channel gating and had negligible effect on the mechanisms responsible for the sarcoplasmic reticulum charge-compensating counter current. Using permeabilized cardiac myocytes to eliminate any contribution of plasmalemmal Na(+) channels to the observed actions of the drug at the cellular level, flecainide did not inhibit RyR2-dependent sarcoplasmic reticulum Ca(2+) release. CONCLUSIONS: The principal action of flecainide in CPVT is not via a direct interaction with RyR2. Our data support a model of flecainide action in which Na(+)-dependent modulation of intracellular Ca(2+) handling attenuates RyR2 dysfunction in CPVT.


Asunto(s)
Antiarrítmicos/farmacología , Flecainida/farmacología , Miocitos Cardíacos/efectos de los fármacos , Canal Liberador de Calcio Receptor de Rianodina/efectos de los fármacos , Taquicardia Ventricular/tratamiento farmacológico , Bloqueadores del Canal de Sodio Activado por Voltaje/farmacología , Animales , Señalización del Calcio/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Células HEK293 , Humanos , Activación del Canal Iónico/efectos de los fármacos , Masculino , Potenciales de la Membrana , Miocitos Cardíacos/metabolismo , Canales de Potasio/efectos de los fármacos , Canales de Potasio/metabolismo , Ratas Sprague-Dawley , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/efectos de los fármacos , Retículo Sarcoplasmático/metabolismo , Taquicardia Ventricular/metabolismo , Taquicardia Ventricular/fisiopatología , Factores de Tiempo , Transfección
5.
J Cell Sci ; 126(Pt 21): 5042-51, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-23943880

RESUMEN

The ryanodine receptor (RyR) is an ion channel composed of four identical subunits mediating calcium efflux from the endo/sarcoplasmic reticulum of excitable and non-excitable cells. We present several lines of evidence indicating that the RyR2 N-terminus is capable of self-association. A combination of yeast two-hybrid screens, co-immunoprecipitation analysis, chemical crosslinking and gel filtration assays collectively demonstrate that a RyR2 N-terminal fragment possesses the intrinsic ability to oligomerize, enabling apparent tetramer formation. Interestingly, N-terminus tetramerization mediated by endogenous disulfide bond formation occurs in native RyR2, but notably not in RyR1. Disruption of N-terminal inter-subunit interactions within RyR2 results in dysregulation of channel activation at diastolic Ca(2+) concentrations from ryanodine binding and single channel measurements. Our findings suggest that the N-terminus interactions mediating tetramer assembly are involved in RyR channel closure, identifying a crucial role for this structural association in the dynamic regulation of intracellular Ca(2+) release.


Asunto(s)
Miocitos Cardíacos/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/química , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Secuencias de Aminoácidos , Animales , Calcio/metabolismo , Humanos , Miocitos Cardíacos/química , Multimerización de Proteína , Conejos , Canal Liberador de Calcio Receptor de Rianodina/genética , Retículo Sarcoplasmático/metabolismo , Porcinos
6.
Mol Pharmacol ; 86(3): 318-29, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25002270

RESUMEN

Ryanodine receptors (RyRs) are intracellular membrane channels playing key roles in many Ca(2+) signaling pathways and, as such, are emerging novel therapeutic and insecticidal targets. RyRs are so named because they bind the plant alkaloid ryanodine with high affinity and although it is established that ryanodine produces profound changes in all aspects of function, our understanding of the mechanisms underlying altered gating is minimal. We address this issue using detailed single-channel gating analysis, mathematical modeling, and energetic evaluation of state transitions establishing that, with ryanodine bound, the RyR pore adopts an extremely stable open conformation. We demonstrate that stability of this state is influenced by interaction of divalent cations with both activating and inhibitory cytosolic sites and, in the absence of activating Ca(2+), trans-membrane voltage. Comparison of the conformational stability of ryanodine- and Imperatoxin A-modified channels identifies significant differences in the mechanisms of action of these qualitatively similar ligands.


Asunto(s)
Canal Liberador de Calcio Receptor de Rianodina/fisiología , Calcio/metabolismo , Células HEK293 , Humanos , Activación del Canal Iónico , Cinética , Modelos Biológicos , Conformación Proteica , Rianodina/química , Canal Liberador de Calcio Receptor de Rianodina/química , Venenos de Escorpión/química , Termodinámica
7.
J Biol Chem ; 288(23): 16671-16679, 2013 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-23632022

RESUMEN

Ryanodine receptor channels (RyR) are key components of striated muscle excitation-contraction coupling, and alterations in their function underlie both inherited and acquired disease. A full understanding of the disease process will require a detailed knowledge of the mechanisms and structures involved in RyR function. Unfortunately, high-resolution structural data, such as exist for K(+)-selective channels, are not available for RyR. In the absence of these data, we have used modeling to identify similarities in the structural elements of K(+) channel pore-forming regions and postulated equivalent regions of RyR. This has identified a sequence of residues in the cytosolic cavity-lining transmembrane helix of RyR (G(4864)LIIDA(4869) in RyR2) analogous to the glycine hinge motif present in many K(+) channels. Gating in these K(+) channels can be disrupted by substitution of residues for the hinge glycine. We investigated the involvement of glycine 4864 in RyR2 gating by monitoring properties of recombinant human RyR2 channels in which this glycine is replaced by residues that alter gating in K(+) channels. Our data demonstrate that introducing alanine at position 4864 produces no significant change in RyR2 function. In contrast, function is altered when glycine 4864 is replaced by either valine or proline, the former preventing channel opening and the latter modifying both ion translocation and gating. Our studies reveal novel information on the structural basis of RyR gating, identifying both similarities with, and differences from, K(+) channels. Glycine 4864 is not absolutely required for channel gating, but some flexibility at this point in the cavity-lining transmembrane helix is necessary for normal RyR function.


Asunto(s)
Activación del Canal Iónico/fisiología , Canal Liberador de Calcio Receptor de Rianodina/química , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Sustitución de Aminoácidos , Cristalografía por Rayos X , Glicina/química , Glicina/genética , Glicina/metabolismo , Células HEK293 , Humanos , Transporte Iónico/fisiología , Mutación Missense , Estructura Terciaria de Proteína , Canal Liberador de Calcio Receptor de Rianodina/genética
8.
Adv Exp Med Biol ; 740: 183-215, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22453943

RESUMEN

In excitable tissues, the ryanodine receptor Ca(2+) release channel (RyR) protein complex regulates excitation-contraction coupling, exocytosis, gene expression and apoptosis. Defects in RyR function, in genetic or acquired pathologies, lead to massive disruptions of Ca(2+) release that can be lethal. Therefore, RyR has emerged as a putative therapeutic target and an increasing number of RyR-targeting drugs are currently being tested.Nonetheless this large-size channel is still a mystery in terms of structure, which hinders full characterization of the properties of this central protein. This chapter is dedicated to the methods available to examine RyR structure and function. The aim of the article is to concentrate on contemporary methodologies rather than focusing overtly on the progress that has been achieved using these techniques. Here we review a series of reliable approaches that are routinely employed to investigate this channel. Technical limitations are discussed, and technological developments are presented. This work is not a handbook, but it can be used as a resource and a starting point for the investigation of RyR at different levels of resolution.


Asunto(s)
Canal Liberador de Calcio Receptor de Rianodina/fisiología , Animales , Sitios de Unión , Calcio/metabolismo , Humanos , Membrana Dobles de Lípidos/química , Estructura Terciaria de Proteína , Canal Liberador de Calcio Receptor de Rianodina/análisis , Canal Liberador de Calcio Receptor de Rianodina/química
10.
Biochem J ; 419(2): 273-8, 2009 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-19226252

RESUMEN

In the present paper we show that distinct human RyR2 (ryanodine receptor type 2) inherited mutations expressed in mammalian cells exhibit either unaltered or increased FKBP12.6 (12.6 kDa FK506-binding protein) binding compared with the wild-type. Oxidizing conditions result in decreased FKBP12.6 binding, but to the same extent as for the wild-type. Our findings suggest that FKBP12.6 regulation of RyR2 is unlikely to be the primary defect in inherited arrhythmogenic cardiac disease.


Asunto(s)
Arritmias Cardíacas/genética , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Proteínas de Unión a Tacrolimus/metabolismo , Arritmias Cardíacas/metabolismo , Línea Celular , Diamida/farmacología , Humanos , Peróxido de Hidrógeno/farmacología , Inmunoprecipitación , Mutación , Unión Proteica/efectos de los fármacos
11.
Circ Res ; 100(6): 874-83, 2007 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-17322175

RESUMEN

Ca(2+) release via type 2 ryanodine receptors (RyR2) regulates cardiac function. Molecular cloning of human RyR2 identified 2 alternatively spliced variants, comprising 30- and 24-bp sequence insertions; yet their role in shaping cardiomyocyte Ca(2+) signaling and cell phenotype is unknown. We profiled the developmental regulation and the tissue and species specificity of these variants and showed that their recombinant expression in HL-1 cardiomyocytes profoundly modulated nuclear and cytoplasmic Ca(2+) release. All splice variants localized to the sarcoplasmic reticulum, perinuclear Golgi apparatus, and to finger-like invaginations of the nuclear envelope (nucleoplasmic reticulum). Strikingly, the 24-bp splice insertion that was present at low levels in embryonic and adult hearts was essential for targeting RyR2 to an intranuclear Golgi apparatus and promoted the intracellular segregation of this variant. The amplitude variability of nuclear and cytoplasmic Ca(2+) fluxes were reduced in nonstimulated cardiomyocytes expressing both 30- and 24-bp splice variants and were associated with lower basal levels of apoptosis. Expression of RyR2 containing the 24-bp insertion also suppressed intracellular Ca(2+) fluxes following prolonged caffeine exposure (1 mmol/L, 16 hours) that protected cells from apoptosis. The antiapoptotic effects of this variant were linked to increased levels of Bcl-2 phosphorylation. In contrast, RyR2 containing the 30-bp insertion, which was abundant in human embryonic heart but was decreased during cardiac development, did not protect cardiomyocytes from caffeine-evoked apoptosis. Thus, we provide the first evidence that RyR2 splice variants exquisitely modulate intracellular Ca(2+) signaling and are key determinants of cardiomyocyte apoptotic susceptibility.


Asunto(s)
Empalme Alternativo/genética , Apoptosis/genética , Señalización del Calcio/fisiología , Miocitos Cardíacos/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Animales , Apoptosis/efectos de los fármacos , Cafeína/farmacología , Núcleo Celular/metabolismo , Células Cultivadas , Citoplasma/metabolismo , Regulación del Desarrollo de la Expresión Génica , Técnicas de Transferencia de Gen , Humanos , Ratones , Datos de Secuencia Molecular , Miocitos Cardíacos/citología , Miocitos Cardíacos/efectos de los fármacos , Proteínas Proto-Oncogénicas c-bcl-2/genética , ARN Mensajero/metabolismo , Especificidad de la Especie
12.
Circ Res ; 98(1): 88-97, 2006 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-16339485

RESUMEN

Arrhythmogenic cardiac ryanodine receptor (RyR2) mutations are associated with stress-induced malignant tachycardia, frequently leading to sudden cardiac death (SCD). The causative mechanisms of RyR2 Ca2+ release dysregulation are complex and remain controversial. We investigated the functional impact of clinically-severe RyR2 mutations occurring in the central domain, and the C-terminal I domain, a key locus of RyR2 autoregulation, on interdomain interactions and Ca2+ release in living cells. Using high-resolution confocal microscopy and fluorescence resonance energy transfer (FRET) analysis of interaction between fusion proteins corresponding to amino- (N-) and carboxyl- (C-) terminal RyR2 domains, we determined that in resting cells, RyR2 interdomain interaction remained unaltered after introduction of SCD-linked mutations and normal Ca2+ regulation was maintained. In contrast, after channel activation, the abnormal Ca2+ release via mutant RyR2 was intrinsically linked to altered interdomain interaction that was equivalent with all mutations and exhibited threshold characteristics (caffeine >2.5 mmol/L; Ca2+ >150 nmol/L). Noise analysis revealed that I domain mutations introduced a distinct pattern of conformational instability in Ca2+ handling and interdomain interaction after channel activation that was absent in signals obtained from the central domain mutation. I domain-linked channel instability also occurred in intact RyR2 expressed in CHO cells and in HL-1 cardiomyocytes. These new insights highlight a critical role for mutation-linked defects in channel autoregulation, and may contribute to a molecular explanation for the augmented Ca2+ release following RyR2 channel activation. Our findings also suggest that the mutational locus may be an important mechanistic determinant of Ca2+ release channel dysfunction in arrhythmia and SCD.


Asunto(s)
Arritmias Cardíacas/etiología , Mutación , Canal Liberador de Calcio Receptor de Rianodina/genética , Animales , Células CHO , Cafeína/farmacología , Calcio/metabolismo , Cricetinae , Muerte Súbita Cardíaca/etiología , Transferencia Resonante de Energía de Fluorescencia , Homeostasis , Humanos , Estructura Terciaria de Proteína , Canal Liberador de Calcio Receptor de Rianodina/química , Canal Liberador de Calcio Receptor de Rianodina/fisiología , Taquicardia Ventricular/etiología
14.
Mol Biol Cell ; 15(6): 2627-38, 2004 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15047862

RESUMEN

Ryanodine receptors (RyR) function as Ca(2+) channels that regulate Ca(2+) release from intracellular stores to control a diverse array of cellular processes. The massive cytoplasmic domain of RyR is believed to be responsible for regulating channel function. We investigated interaction between the transmembrane Ca(2+)-releasing pore and a panel of cytoplasmic domains of the human cardiac RyR in living cells. Expression of eGFP-tagged RyR constructs encoding distinct transmembrane topological models profoundly altered intracellular Ca(2+) handling and was refractory to modulation by ryanodine, FKBP12.6 and caffeine. The impact of coexpressing dsRed-tagged cytoplasmic domains of RyR2 on intracellular Ca(2+) phenotype was assessed using confocal microscopy coupled with parallel determination of in situ protein: protein interaction using fluorescence resonance energy transfer (FRET). Dynamic interactions between RyR cytoplasmic and transmembrane domains were mediated by amino acids 3722-4610 (Interacting or "I"-domain) which critically modulated intracellular Ca(2+) handling and restored RyR sensitivity to caffeine activation. These results provide compelling evidence that specific interaction between cytoplasmic and transmembrane domains is an important mechanism in the intrinsic modulation of RyR Ca(2+) release channels.


Asunto(s)
Membrana Celular/metabolismo , Citoplasma/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/química , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Animales , Sitios de Unión , Células CHO , Calcio/metabolismo , Cricetinae , Transferencia Resonante de Energía de Fluorescencia , Humanos , Concentración de Iones de Hidrógeno , Microscopía Confocal , Modelos Biológicos , Estructura Terciaria de Proteína , Canal Liberador de Calcio Receptor de Rianodina/genética , Fracciones Subcelulares/metabolismo
15.
Sci Rep ; 6: 34452, 2016 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-27703263

RESUMEN

The flow of ions through membrane channels is precisely regulated by gates. The architecture and function of these elements have been studied extensively, shedding light on the mechanisms underlying gating. Recent investigations have focused on ion occupancy of the channel's selectivity filter and its ability to alter gating, with most studies involving prokaryotic K+ channels. Some studies used large quaternary ammonium blocker molecules to examine the effects of altered ionic flux on gating. However, the absence of blocking events that are visibly distinct from closing events in K+ channels makes unambiguous interpretation of data from single channel recordings difficult. In this study, the large K+ conductance of the RyR2 channel permits direct observation of blocking events as distinct subconductance states and for the first time demonstrates the differential effects of blocker molecules on channel gating. This experimental platform provides valuable insights into mechanisms of blocker-induced modulation of ion channel gating.


Asunto(s)
Activación del Canal Iónico/fisiología , Potasio/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/química , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Animales , Células HEK293 , Humanos , Transporte Iónico/fisiología , Ratones , Canal Liberador de Calcio Receptor de Rianodina/genética
16.
Br J Pharmacol ; 173(15): 2446-59, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27237957

RESUMEN

BACKGROUND AND PURPOSE: Flecainide is a use-dependent blocker of cardiac Na(+) channels. Mechanistic analysis of this block showed that the cationic form of flecainide enters the cytosolic vestibule of the open Na(+) channel. Flecainide is also effective in the treatment of catecholaminergic polymorphic ventricular tachycardia but, in this condition, its mechanism of action is contentious. We investigated how flecainide derivatives influence Ca(2) (+) -release from the sarcoplasmic reticulum through the ryanodine receptor channel (RyR2) and whether this correlates with their effectiveness as blockers of Na(+) and/or RyR2 channels. EXPERIMENTAL APPROACH: We compared the ability of fully charged (QX-FL) and neutral (NU-FL) derivatives of flecainide to block individual recombinant human RyR2 channels incorporated into planar phospholipid bilayers, and their effects on the properties of Ca(2) (+) sparks in intact adult rat cardiac myocytes. KEY RESULTS: Both QX-FL and NU-FL were partial blockers of the non-physiological cytosolic to luminal flux of cations through RyR2 channels but were significantly less effective than flecainide. None of the compounds influenced the physiologically relevant luminal to cytosol cation flux through RyR2 channels. Intracellular flecainide or QX-FL, but not NU-FL, reduced Ca(2) (+) spark frequency. CONCLUSIONS AND IMPLICATIONS: Given its inability to block physiologically relevant cation flux through RyR2 channels, and its lack of efficacy in blocking the cytosolic-to-luminal current, the effect of QX-FL on Ca(2) (+) sparks is likely, by analogy with flecainide, to result from Na(+) channel block. Our data reveal important differences in the interaction of flecainide with sites in the cytosolic vestibules of Na(+) and RyR2 channels.


Asunto(s)
Calcio/metabolismo , Flecainida/farmacología , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/efectos de los fármacos , Retículo Sarcoplasmático/metabolismo , Animales , Células Cultivadas , Relación Dosis-Respuesta a Droga , Flecainida/análogos & derivados , Flecainida/química , Células HEK293 , Humanos , Masculino , Estructura Molecular , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Ratas , Ratas Sprague-Dawley , Relación Estructura-Actividad
17.
Cardiovasc Res ; 64(1): 52-60, 2004 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-15364613

RESUMEN

OBJECTIVES: Point mutations in the cardiac ryanodine receptor (RyR2) mediate abnormal intracellular Ca(2+) release and are associated with stress-induced ventricular tachycardia (VT), leading to sudden cardiac death (SCD). Although the precise molecular basis of RyR2 dysfunction in SCD remains controversial, there is consensus that the mutations characterised to date all exhibit gain-of-function Ca(2+) release properties following cell stimulation. We investigated the functional impact of a distinct set of SCD-linked RyR2 mutations (L(433)P, N(2386)I, R(176)Q/T(2504)M) on intracellular Ca(2+) handling. METHODS: We expressed full-length recombinant human wild-type (WT) and SCD-linked RyR2 mutations in human embryonic kidney (HEK) cells, and profiled the spatial and amplitude characteristics of caffeine-evoked Ca(2+) release through homo-tetrameric channels in living cells using rapid confocal laser scanning microscopy. RESULTS: Analysis of the precise mode of Ca(2+) release in HEK cells expressing RyR2 mutants demonstrated profound differences when compared with WT channels. The SCD-linked RyR2 mutations characterised in this study exhibited heterogeneous Ca(2+) release profiles, including the novel observation that one of the mutants, (L(433)P), exhibited a marked reduction in sensitivity to channel activation. However, all SCD-linked RyR2 mutations characterised in this study resulted in an increased duration of elevated cytoplasmic Ca(2+) levels following channel activation. CONCLUSIONS: Our live cell-based data demonstrates functional heterogeneity of Ca(2+) release through SCD-linked RyR2 mutants, suggesting that the mechanistic basis of RyR2 dysfunction in SCD may be more complex than previously anticipated. These findings may have profound consequences for the therapeutic modulation of RyR2 in stress-induced VT and SCD.


Asunto(s)
Muerte Súbita Cardíaca/etiología , Mutación Puntual , Canal Liberador de Calcio Receptor de Rianodina/genética , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Secuencia de Bases , Cafeína/farmacología , Calcio/metabolismo , Línea Celular , Estimulantes del Sistema Nervioso Central/farmacología , Relación Dosis-Respuesta a Droga , Humanos , Riñón/embriología , Riñón/metabolismo , Microscopía Confocal , Datos de Secuencia Molecular , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Transfección
18.
Cardiovasc Res ; 105(1): 118-28, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25411383

RESUMEN

AIMS: The ryanodine receptor (RyR2) is an intracellular Ca(2+) release channel essential for cardiac excitation-contraction coupling. Abnormal RyR2 channel function results in the generation of arrhythmias and sudden cardiac death. The present study was undertaken to investigate the mechanistic basis of RyR2 dysfunction in inherited arrhythmogenic cardiac disease. METHODS AND RESULTS: We present several lines of complementary evidence, indicating that the arrhythmia-associated L433P mutation disrupts RyR2 N-terminus self-association. A combination of yeast two-hybrid, co-immunoprecipitation, and chemical cross-linking assays collectively demonstrate that a RyR2 N-terminal fragment carrying the L433P mutation displays substantially reduced self-interaction compared with wild type. Moreover, sucrose density gradient centrifugation reveals that the L433P mutation impairs tetramerization of the full-length channel. [(3)H]Ryanodine-binding assays demonstrate that disrupted N-terminal intersubunit interactions within RyR2(L433P) confer an altered sensitivity to Ca(2+) activation. Calcium imaging of RyR2(L433P)-expressing cells reveals substantially prolonged Ca(2+) transients and reduced Ca(2+) store content indicating defective channel closure. Importantly, dantrolene treatment reverses the L433P mutation-induced impairment and restores channel function. CONCLUSION: The N-terminus domain constitutes an important structural determinant for the functional oligomerization of RyR2. Our findings are consistent with defective N-terminus self-association as a molecular mechanism underlying RyR2 channel deregulation in inherited arrhythmogenic cardiac disease. Significantly, the therapeutic action of dantrolene may occur via the restoration of normal RyR2 N-terminal intersubunit interactions.


Asunto(s)
Arritmias Cardíacas/tratamiento farmacológico , Dantroleno/farmacología , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Sustitución de Aminoácidos , Antiarrítmicos/farmacología , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Displasia Ventricular Derecha Arritmogénica/etiología , Displasia Ventricular Derecha Arritmogénica/genética , Displasia Ventricular Derecha Arritmogénica/metabolismo , Señalización del Calcio/efectos de los fármacos , Células HEK293 , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , Humanos , Modelos Cardiovasculares , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/química , Miocardio/metabolismo , Dominios y Motivos de Interacción de Proteínas/efectos de los fármacos , Multimerización de Proteína/efectos de los fármacos , Estabilidad Proteica/efectos de los fármacos , Canal Liberador de Calcio Receptor de Rianodina/química , Taquicardia Ventricular/etiología , Taquicardia Ventricular/genética , Taquicardia Ventricular/metabolismo
19.
J Gen Physiol ; 140(2): 139-58, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22802361

RESUMEN

Cardiac muscle contraction, triggered by the action potential, is mediated by the release of Ca(2+) from the sarcoplasmic reticulum through ryanodine receptor (RyR)2 channels. In situ, RyR2 gating is modulated by numerous physiological and pharmacological agents, and altered RyR2 function underlies the occurrence of arrhythmias in both inherited and acquired diseases. To understand fully the mechanisms underpinning the regulation of RyR2 in the normal heart and how these systems are altered in pathological conditions, we must first gain a detailed knowledge of the fundamental processes of RyR2 gating. In this investigation, we provide key novel mechanistic insights into the physical reality of RyR2 gating revealed by new experimental and analytical approaches. We have examined in detail the single-channel gating kinetics of the purified human RyR2 when activated by cytosolic Ca(2+) in a stringently regulated environment where the modulatory influence of factors external to the channel were minimized. The resulting gating schemes are based on an accurate description of single-channel kinetics using hidden Markov model analysis and reveal several novel aspects of RyR2 gating behavior: (a) constitutive gating is observed as unliganded opening events; (b) binding of Ca(2+) to the channel stabilizes it in different open states; (c) RyR2 exists in two preopening closed conformations in equilibrium, one of which binds Ca(2+) more readily than the other; (d) the gating of RyR2 when bound to Ca(2+) can be described by a kinetic scheme incorporating bursts; and (e) analysis of flicker closing events within bursts reveals gating activity that is not influenced by ligand binding. The gating schemes generated in this investigation provide a framework for future studies in which the mechanisms of action of key physiological regulatory factors, disease-linked mutations, and potential therapeutic compounds can be described precisely.


Asunto(s)
Calcio/metabolismo , Activación del Canal Iónico , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Sitios de Unión , Células HEK293 , Humanos , Cinética , Modelos Biológicos , Miocardio/metabolismo , Técnicas de Placa-Clamp , Conformación Proteica , Canal Liberador de Calcio Receptor de Rianodina/química
20.
FEBS Lett ; 584(10): 2153-60, 2010 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-20132818

RESUMEN

Mutations in RyR2 are causative of an inherited disorder which often results in sudden cardiac death. Dysfunctional channel behaviour has been the subject of many investigations varying from single channel analysis through to complex animal models. This review discusses recent advances in the field, describes the controversy surrounding the exact consequences of RyR2 mutation and how the disparate data may be reconciled. This heterogeneity of function with respect to the effects of polymorphisms, phosphorylation, cytosolic and luminal Ca(2+) as well as inter-domain interactions may have important implications for the recent pharmaceutical therapies which have been put forward. We surmise that a comprehensive characterisation of mutations on a case-by-case basis may be beneficial for the development of specifically targeted therapies.


Asunto(s)
Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Mutación , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Animales , Arritmias Cardíacas/tratamiento farmacológico , Humanos , Fosforilación , Polimorfismo Genético , Canal Liberador de Calcio Receptor de Rianodina/química , Taquicardia Ventricular/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA