Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant Physiol ; 188(2): 1158-1173, 2022 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-34865134

RESUMEN

Flowers are produced by floral meristems, groups of stem cells that give rise to floral organs. In grasses, including the major cereal crops, flowers (florets) are contained in spikelets, which contain one to many florets, depending on the species. Importantly, not all grass florets are developmentally equivalent, and one or more florets are often sterile or abort in each spikelet. Members of the Andropogoneae tribe, including maize (Zea mays), produce spikelets with two florets; the upper and lower florets are usually dimorphic, and the lower floret is greatly reduced compared to the upper floret. In maize ears, early development appears identical in both florets but the lower floret ultimately aborts. To gain insight into the functional differences between florets with different fates, we used laser capture microdissection coupled with RNA-sequencing to globally examine gene expression in upper and lower floral meristems in maize. Differentially expressed genes were involved in hormone regulation, cell wall, sugar, and energy homeostasis. Furthermore, cell wall modifications and sugar accumulation differed between the upper and lower florets. Finally, we identified a boundary domain between upper and lower florets, which we hypothesize is important for floral meristem activity. We propose a model in which growth is suppressed in the lower floret by limiting sugar availability and upregulating genes involved in growth repression. This growth repression module may also regulate floret fertility in other grasses and potentially be modulated to engineer more productive cereal crops.


Asunto(s)
Flores/anatomía & histología , Flores/crecimiento & desarrollo , Flores/genética , Meristema/anatomía & histología , Meristema/crecimiento & desarrollo , Zea mays/anatomía & histología , Zea mays/crecimiento & desarrollo , Zea mays/genética , Productos Agrícolas/anatomía & histología , Productos Agrícolas/genética , Productos Agrícolas/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Variación Genética , Meristema/genética , Transcriptoma
2.
J Phycol ; 54(6): 879-887, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30288746

RESUMEN

Red algae are the oldest identifiable multicellular eukaryotes, with a fossil record dating back more than a billion years. During that time two major rhodophyte lineages, bangiophytes and florideophytes, have evolved varied levels of morphological complexity. These two groups are distinguished, in part, by different patterns of multicellular development, with florideophytes exhibiting a far greater diversity of morphologies. Interestingly, during their long evolutionary history, there is no record of a rhodophyte achieving the kinds of cellular and tissue-specific differentiation present in other multicellular algal lineages. To date, the genetic underpinnings of unique aspects of red algal development are largely unexplored; however, they must reflect the complements and patterns of expression of key regulatory genes. Here we report comparative evolutionary and gene expression analyses of core subunits of the SWI/SNF chromatin-remodeling complex, which is implicated in cell differentiation and developmental regulation in more well studied multicellular groups. Our results suggest that a single, canonical SWI/SNF complex was present in the rhodophyte ancestor, with gene duplications and evolutionary diversification of SWI/SNF subunits accompanying the evolution of multicellularity in the common ancestor of bangiophytes and florideophytes. Differences in how SWI/SNF chromatin remodeling evolved subsequently, in particular gene losses and more rapid divergence of SWI3 and SNF5 in bangiophytes, could help to explain why they exhibit a more limited range of morphological complexity than their florideophyte cousins.


Asunto(s)
Proteínas Algáceas/genética , Ensamble y Desensamble de Cromatina , Rhodophyta/genética , Transcripción Genética , Proteínas Algáceas/metabolismo , Genoma , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Rhodophyta/metabolismo , Transcriptoma
3.
Plant Cell ; 26(12): 4702-17, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25465405

RESUMEN

Plant architecture is determined by meristems that initiate leaves during vegetative development and flowers during reproductive development. Maize (Zea mays) inflorescences are patterned by a series of branching events, culminating in floral meristems that produce sexual organs. The maize fuzzy tassel (fzt) mutant has striking inflorescence defects with indeterminate meristems, fasciation, and alterations in sex determination. fzt plants have dramatically reduced plant height and shorter, narrower leaves with leaf polarity and phase change defects. We positionally cloned fzt and discovered that it contains a mutation in a dicer-like1 homolog, a key enzyme required for microRNA (miRNA) biogenesis. miRNAs are small noncoding RNAs that reduce target mRNA levels and are key regulators of plant development and physiology. Small RNA sequencing analysis showed that most miRNAs are moderately reduced in fzt plants and a few miRNAs are dramatically reduced. Some aspects of the fzt phenotype can be explained by reduced levels of known miRNAs, including miRNAs that influence meristem determinacy, phase change, and leaf polarity. miRNAs responsible for other aspects of the fzt phenotype are unknown and likely to be those miRNAs most severely reduced in fzt mutants. The fzt mutation provides a tool to link specific miRNAs and targets to discrete phenotypes and developmental roles.


Asunto(s)
Meristema/fisiología , Proteínas de Plantas/fisiología , Zea mays/genética , Flores/citología , Flores/genética , Flores/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Meristema/crecimiento & desarrollo , Meristema/ultraestructura , MicroARNs/fisiología , Microscopía Electrónica de Rastreo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Zea mays/anatomía & histología , Zea mays/citología , Zea mays/crecimiento & desarrollo
4.
Plant Cell ; 21(9): 2578-90, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19749152

RESUMEN

Although many genes that regulate floral development have been identified in Arabidopsis thaliana, relatively few are known in the grasses. In normal maize (Zea mays), each spikelet produces an upper and lower floral meristem, which initiate floral organs in a defined phyllotaxy before being consumed in the production of an ovule. The bearded-ear (bde) mutation affects floral development differently in the upper and lower meristem. The upper floral meristem initiates extra floral organs that are often mosaic or fused, while the lower floral meristem initiates additional floral meristems. We cloned bde by positional cloning and found that it encodes zea agamous3 (zag3), a MADS box transcription factor in the conserved AGAMOUS-LIKE6 clade. Mutants in the maize homolog of AGAMOUS, zag1, have a subset of bde floral defects. bde zag1 double mutants have a severe ear phenotype, not observed in either single mutant, in which floral meristems are converted to branch-like meristems, indicating that bde and zag1 redundantly promote floral meristem identity. In addition, BDE and ZAG1 physically interact. We propose a model in which BDE functions in at least three distinct complexes to regulate floral development in the maize ear.


Asunto(s)
Flores/crecimiento & desarrollo , Proteínas de Dominio MADS/metabolismo , Proteínas de Plantas/metabolismo , Zea mays/genética , Clonación Molecular , Flores/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Dominio MADS/genética , Meristema/genética , Meristema/crecimiento & desarrollo , Mutación , Proteínas de Plantas/genética , Mapeo de Interacción de Proteínas , ARN de Planta/genética , Zea mays/crecimiento & desarrollo , Zea mays/metabolismo
5.
Proc Natl Acad Sci U S A ; 103(3): 620-5, 2006 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-16407099

RESUMEN

Development of the Caenorhabditis elegans vulva serves as a paradigm for intercellular signaling during animal development. In wild-type animals, the somatic gonadal anchor cell generates the LIN-3/EGF ligand to induce vulval fates in the underlying hypodermis, whereas FBF, FOG-1, and FOG-3 control germ-line development. Here we report that FBF functions redundantly with FOG-1 and FOG-3 to control vulval induction: animals lacking FBF and either FOG-1 or FOG-3 have multiple vulvae, the Muv phenotype. The fog; fbf Muv phenotype is generated by aberrant induction of vulval precursor cells (VPCs): in wild-type animals, three VPCs are induced to form a single vulva, but, in fog; fbf mutants, four or five VPCs are typically induced, resulting in ectopic vulvae. Laser ablation experiments and mosaic analyses demonstrate that the germ line is critical for the fog; fbf Muv phenotype. Consistent with that site of action, we detect FBF and FOG-1 in the germ line but not in the VPCs. The simplest interpretation is that FOG-1, FOG-3, and FBF act in the germ line to influence vulval fates. The LIN-3/EGF ligand may be the germ-line signal to the VPCs: the fog; fbf Muv phenotype depends on LIN-3 activity, and the lin-3 3' UTR possesses an FBF binding element. Our findings reveal new insights into germ line-to-soma signals and the role of PUF proteins in animal development.


Asunto(s)
Caenorhabditis elegans/embriología , Inducción Embrionaria/fisiología , Vulva/embriología , Animales , Proteínas de Caenorhabditis elegans/biosíntesis , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/fisiología , Regulación hacia Abajo/genética , Factor de Crecimiento Epidérmico/biosíntesis , Factor de Crecimiento Epidérmico/genética , Femenino , Mosaicismo , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/biosíntesis , Proteínas de Unión al ARN/genética
6.
Development ; 132(15): 3471-81, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16000383

RESUMEN

RNA-binding proteins control germline development in metazoans. This work focuses on control of the C. elegans germline by two RNA-binding proteins: FOG-1, a CPEB homolog; and FBF, a PUF family member. Previous studies have shown that FOG-1 specifies the sperm fate and that FBF promotes proliferation. Here, we report that FOG-1 also promotes proliferation. Whereas fbf-1 fbf-2 double mutants make approximately 120 germ cells, fog-1; fbf-1 fbf-2 triple mutants make only approximately 10 germ cells. The triple mutant germline divides normally until early L2, when germ cells prematurely enter meiosis and begin oogenesis. Importantly, fog-1/+; fbf-1 fbf-2 animals make more germ cells than fbf-1 fbf-2 double mutants, demonstrating that one dose of wild-type fog-1 promotes proliferation more effectively than two doses - at least in the absence of FBF. FOG-1 protein is barely detectable in proliferating germ cells, but abundant in germ cells destined for spermatogenesis. Based on fog-1 dose effects, together with the gradient of FOG-1 protein abundance, we suggest that low FOG-1 promotes proliferation and high FOG-1 specifies spermatogenesis. FBF binds specifically to regulatory elements in the fog-1 3'UTR, and FOG-1 increases in animals lacking FBF. Therefore, FBF represses fog-1 expression. We suggest that FBF promotes continued proliferation, at least in part, by maintaining FOG-1 at a low level appropriate for proliferation. The dose-dependent control of proliferation and cell fate by FOG-1 has striking parallels with Xenopus CPEB, suggesting a conserved mechanism in animal development.


Asunto(s)
Caenorhabditis elegans/embriología , Proteínas Portadoras/fisiología , División Celular/fisiología , Proteínas Nucleares/fisiología , Espermatozoides/fisiología , Animales , Secuencia de Bases , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/fisiología , Proteínas Portadoras/genética , Cartilla de ADN , Mutación de Línea Germinal , Hibridación in Situ , Masculino , Proteínas Nucleares/genética , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/fisiología , Procesos de Determinación del Sexo , Espermatogénesis , Espermatozoides/clasificación
8.
Nature ; 417(6889): 660-3, 2002 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-12050669

RESUMEN

Germline stem cells are defined by their unique ability to generate more of themselves as well as differentiated gametes. The molecular mechanisms controlling the decision between self-renewal and differentiation are central unsolved problems in developmental biology with potentially broad medical implications. In Caenorhabditis elegans, germline stem cells are controlled by the somatic distal tip cell. FBF-1 and FBF-2, two nearly identical proteins, which together are called FBF ('fem-3 mRNA binding factor'), were originally discovered as regulators of germline sex determination. Here we report that FBF also controls germline stem cells: in an fbf-1 fbf-2 double mutant, germline proliferation is initially normal, but stem cells are not maintained. We suggest that FBF controls germline stem cells, at least in part, by repressing gld-1, which itself promotes commitment to the meiotic cell cycle. FBF belongs to the PUF family ('Pumilio and FBF') of RNA-binding proteins. Pumilio controls germline stem cells in Drosophila females, and, in lower eukaryotes, PUF proteins promote continued mitoses. We suggest that regulation by PUF proteins may be an ancient and widespread mechanism for control of stem cells.


Asunto(s)
Caenorhabditis elegans/citología , Caenorhabditis elegans/genética , Secuencia Conservada , Regulación de la Expresión Génica , Células Germinativas/citología , Proteínas del Helminto/metabolismo , Proteínas de Unión al ARN/metabolismo , Células Madre/citología , Regiones no Traducidas 3'/genética , Regiones no Traducidas 3'/metabolismo , Animales , Secuencia de Bases , Caenorhabditis elegans/crecimiento & desarrollo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Diferenciación Celular , División Celular , Linaje de la Célula , Trastornos del Desarrollo Sexual/genética , Ensayo de Cambio de Movilidad Electroforética , Femenino , Genes de Helminto/genética , Células Germinativas/metabolismo , Proteínas del Helminto/genética , Masculino , Meiosis , Mutación/genética , Unión Proteica , Proteínas de Unión al ARN/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Elementos de Respuesta/genética , Células Madre/metabolismo , Técnicas del Sistema de Dos Híbridos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA