Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Neurophysiol ; 131(2): 241-260, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38197176

RESUMEN

Perinatal exposure to a high-fat, high-sugar Western-style diet (WSD) is associated with altered neural circuitry in the melanocortin system. This association may have an underlying inflammatory component, as consumption of a WSD during pregnancy can lead to an elevated inflammatory environment. Our group previously demonstrated that prenatal WSD exposure was associated with increased markers of inflammation in the placenta and fetal hypothalamus in Japanese macaques. In this follow-up study, we sought to determine whether this heightened inflammatory state persisted into the postnatal period, as prenatal exposure to inflammation has been shown to reprogram offspring immune function and long-term neuroinflammation would present a potential means for prolonged disruptions to microglia-mediated neuronal circuit formation. Neuroinflammation was approximated in 1-yr-old offspring by counting resident microglia and peripherally derived macrophages in the region of the hypothalamus examined in the fetal study, the arcuate nucleus (ARC). Microglia and macrophages were immunofluorescently stained with their shared marker, ionized calcium-binding adapter molecule 1 (Iba1), and quantified in 11 regions along the rostral-caudal axis of the ARC. A mixed-effects model revealed main effects of perinatal diet (P = 0.011) and spatial location (P = 0.003) on Iba1-stained cell count. Perinatal WSD exposure was associated with a slight decrease in the number of Iba1-stained cells, and cells were more densely located in the center of the ARC. These findings suggest that the heightened inflammatory state experienced in utero does not persist postnatally. This inflammatory response trajectory could have important implications for understanding how neurodevelopmental disorders progress.NEW & NOTEWORTHY Prenatal Western-style diet exposure is associated with increased microglial activity in utero. However, we found a potentially neuroprotective reduction in microglia count during early postnatal development. This trajectory could inform the timing of disruptions to microglia-mediated neuronal circuit formation. Additionally, this is the first study in juvenile macaques to characterize the distribution of microglia along the rostral-caudal axis of the arcuate nucleus of the hypothalamus. Nearby neuronal populations may be greater targets during inflammatory insults.


Asunto(s)
Núcleo Arqueado del Hipotálamo , Macaca fuscata , Embarazo , Animales , Femenino , Microglía , Enfermedades Neuroinflamatorias , Estudios de Seguimiento , Hipotálamo , Dieta Alta en Grasa/efectos adversos , Macaca
2.
Cereb Cortex ; 30(3): 1573-1585, 2020 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-31665252

RESUMEN

Human and animal cross-sectional studies have shown that maternal levels of the inflammatory cytokine interleukin-6 (IL-6) may compromise brain phenotypes assessed at single time points. However, how maternal IL-6 associates with the trajectory of brain development remains unclear. We investigated whether maternal IL-6 levels during pregnancy relate to offspring amygdala volume development and anxiety-like behavior in Japanese macaques. Magnetic resonance imaging (MRI) was administered to 39 Japanese macaque offspring (Female: 18), providing at least one or more time points at 4, 11, 21, and 36 months of age with a behavioral assessment at 11 months of age. Increased maternal third trimester plasma IL-6 levels were associated with offspring's smaller left amygdala volume at 4 months, but with more rapid amygdala growth from 4 to 36 months. Maternal IL-6 predicted offspring anxiety-like behavior at 11 months, which was mediated by reduced amygdala volumes in the model's intercept (i.e., 4 months). The results increase our understanding of the role of maternal inflammation in the development of neurobehavioral disorders by detailing the associations of a commonly examined inflammatory indicator, IL-6, on amygdala volume growth over time, and anxiety-like behavior.


Asunto(s)
Amígdala del Cerebelo/patología , Conducta Animal/fisiología , Interleucina-6/sangre , Efectos Tardíos de la Exposición Prenatal/patología , Amígdala del Cerebelo/metabolismo , Animales , Encéfalo/metabolismo , Encéfalo/patología , Niño , Depresión/metabolismo , Depresión/fisiopatología , Femenino , Humanos , Macaca fuscata , Conducta Materna/fisiología , Embarazo , Efectos Tardíos de la Exposición Prenatal/metabolismo
3.
bioRxiv ; 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38260331

RESUMEN

Brain development is highly dynamic and asynchronous, marked by the sequential maturation of functional circuits across the brain. The timing and mechanisms driving circuit maturation remain elusive due to an inability to identify and map maturing neuronal populations. Here we create DevATLAS (Developmental Activation Timing-based Longitudinal Acquisition System) to overcome this obstacle. We develop whole-brain mapping methods to construct the first longitudinal, spatiotemporal map of circuit maturation in early postnatal mouse brains. Moreover, we uncover dramatic impairments within the deep cortical layers in a neurodevelopmental disorders (NDDs) model, demonstrating the utility of this resource to pinpoint when and where circuit maturation is disrupted. Using DevATLAS, we reveal that early experiences accelerate the development of hippocampus-dependent learning by increasing the synaptically mature granule cell population in the dentate gyrus. Finally, DevATLAS enables the discovery of molecular mechanisms driving activity-dependent circuit maturation.

4.
Front Neurosci ; 16: 1067479, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36704012

RESUMEN

Introduction: The neurotransmitter serotonin is a key regulator of neurotransmission, mood, and behavior and is essential in neurodevelopment. Dysfunction in this important neurotransmitter system is connected to behavioral disorders such as depression and anxiety. We have previously shown that the developing serotonin system is sensitive to perinatal exposure to Western-style diet (WSD). Methods: To advance our hypothesis that perinatal WSD has a long-term impact on the serotonergic system, we designed a fluorescent immunohistochemistry experiment using antibodies against tryptophan hydroxylase 2 (TPH2) and vesicular glutamate transporter 3 (VGLUT3) to probe protein expression in the raphe subnuclei in 13-month-old Japanese macaques (Macaca fuscata; n = 22). VGLUT3 has been shown to be coexpressed in TPH2+ cells in the dorsal raphe (DR) and median raphe nucleus (MnR) of rodent raphe nuclei and may provide information about the projection site of serotonergic fibers into the forebrain. We also sought to improve scientific understanding of the heterogeneity of the serotonin production center for the central nervous system, the midbrain raphe nuclei. Results: In this immunohistochemical study, we provide the most detailed characterization of the developing primate raphe to date. We utilize multi-level modeling (MLM) to simultaneously probe the contribution of WSD, offspring sex, and raphe anatomical location, to raphe neuronal measurements. Our molecular and morphological characterization revealed that the 13-month-old macaque DR is remarkably similar to that of adult macaques and humans. We demonstrate that vesicular glutamate transporter 3 (VGLUT3), which rodent studies have recently shown can distinguish raphe populations with distinct projection targets and behavioral functions, likewise contributes to the heterogeneity of the primate raphe. Discussion: This study provides evidence that perinatal WSD has a long-term impact on the density of serotonin-producing neurons, potentially limiting serotonin availability throughout the brain. Due to the critical involvement of serotonin in development and behavior, these findings provide important insight into the mechanisms by which maternal nutrition and metabolic state influence offspring behavioral outcomes. Finally, these findings could inform future research focused on designing therapeutic interventions to optimize neural development and decrease a child's risk of developing a mental health disorder.

5.
Biol Psychiatry ; 85(2): 122-134, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30293647

RESUMEN

Maternal nutrition is critically important for fetal development. Recent human studies demonstrate a strong connection between diet during pregnancy and offspring risk for neuropsychiatric disorders including depression, anxiety, and attention-deficit/hyperactivity disorder. Animal models have emerged as a crucial tool for understanding maternal nutrition's contribution to prenatal programming and the later development of neuropsychiatric disorders. This review highlights preclinical studies examining how maternal consumption of the three macronutrients (protein, fats, and carbohydrates) influence offspring negative-valence behaviors relevant to neuropsychiatric disorders. We highlight the translational aspects of animal models and so examine exposure periods that mirror the neurodevelopmental stages of human gestation. Because of our emphasis on programmed changes in neurobehavioral development, studies that continue diet exposure until assessment in adulthood are not discussed. The presented research provides a strong foundation of preclinical evidence of nutritional programming of neurobehavioral impairments. Alterations in risk assessment and response were observed alongside neurodevelopmental impairments related to neurogenesis, synaptogenesis, and synaptic plasticity. To date, the large majority of studies utilized rodent models, and the field could benefit from additional study of large-animal models. Additional future directions are discussed, including the need for further studies examining how sex as a biological variable affects the contribution of maternal nutrition to prenatal programming.


Asunto(s)
Fenómenos Fisiologicos Nutricionales Maternos/fisiología , Trastornos Mentales/fisiopatología , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Animales , Encéfalo/crecimiento & desarrollo , Período Crítico Psicológico , Modelos Animales de Enfermedad , Femenino , Humanos , Embarazo
6.
Artículo en Inglés | MEDLINE | ID: mdl-29740395

RESUMEN

Nutritional status influences brain health and gestational exposure to metabolic disorders (e.g. obesity and diabetes) increases the risk of neuropsychiatric disorders. The aim of the present study was to further investigate the role of maternal Western-style diet (WSD), metabolic state, and inflammatory factors in the programming of Japanese macaque offspring behavior. Utilizing structural equation modeling, we investigated the relationships between maternal diet, prepregnancy adiposity, third trimester insulin response, and plasma cytokine levels on 11-month-old offspring behavior. Maternal WSD was associated with greater reactive and ritualized anxiety in offspring. Maternal adiposity and third trimester macrophage-derived chemokine (MDC) exerted opposing effects on offspring high-energy outbursts. Elevated levels of this behavior were associated with low maternal MDC and increased prepregnancy adiposity. This is the first study to show that maternal MDC levels influence offspring behavior. We found no evidence suggesting maternal peripheral inflammatory response mediated the effect of maternal diet and metabolic state on aberrant offspring behavior. Additionally, the extent of maternal metabolic impairment differentially influenced chemokine response. Elevated prepregnancy adiposity suppressed third trimester chemokines, while obesity-induced insulin resistance augmented peripheral chemokine levels. WSD also directly increased maternal interleukin-12. This is the first non-human primate study to delineate the effects of maternal diet and metabolic state on gestational inflammatory environment and subsequent offspring behavior. Our findings give insight to the complex mechanisms by which diet, metabolic state, and inflammation during pregnancy exert unique influences on offspring behavioral regulation.

7.
Artículo en Inglés | MEDLINE | ID: mdl-28785241

RESUMEN

Perinatal exposure to maternal obesity and high-fat diet (HFD) consumption not only poses metabolic risks to offspring but also impacts brain development and mental health. Using a non-human primate model, we observed a persistent increase in anxiety in juvenile offspring exposed to a maternal HFD. Postweaning HFD consumption also increased anxiety and independently increased stereotypic behaviors. These behavioral changes were associated with modified cortisol stress response and impairments in the development of the central serotonin synthesis, with altered tryptophan hydroxylase-2 mRNA expression in the dorsal and median raphe. Postweaning HFD consumption decreased serotonergic immunoreactivity in area 10 of the prefrontal cortex. These results suggest that perinatal exposure to HFD consumption programs development of the brain and endocrine system, leading to behavioral impairments associated with mental health and neurodevelopmental disorders. Also, an early nutritional intervention (consumption of the control diet at weaning) was not sufficient to ameliorate many of the behavioral changes, such as increased anxiety, that were induced by maternal HFD consumption. Given the level of dietary fat consumption and maternal obesity in developed nations these findings have important implications for the mental health of future generations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA