Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 84(5): 839-853.e12, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38242129

RESUMEN

RNF168 plays a central role in the DNA damage response (DDR) by ubiquitylating histone H2A at K13 and K15. These modifications direct BRCA1-BARD1 and 53BP1 foci formation in chromatin, essential for cell-cycle-dependent DNA double-strand break (DSB) repair pathway selection. The mechanism by which RNF168 catalyzes the targeted accumulation of H2A ubiquitin conjugates to form repair foci around DSBs remains unclear. Here, using cryoelectron microscopy (cryo-EM), nuclear magnetic resonance (NMR) spectroscopy, and functional assays, we provide a molecular description of the reaction cycle and dynamics of RNF168 as it modifies the nucleosome and recognizes its ubiquitylation products. We demonstrate an interaction of a canonical ubiquitin-binding domain within full-length RNF168, which not only engages ubiquitin but also the nucleosome surface, clarifying how such site-specific ubiquitin recognition propels a signal amplification loop. Beyond offering mechanistic insights into a key DDR protein, our study aids in understanding site specificity in both generating and interpreting chromatin ubiquitylation.


Asunto(s)
Nucleosomas , Ubiquitina-Proteína Ligasas , Nucleosomas/genética , Microscopía por Crioelectrón , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Histonas/metabolismo , Cromatina/genética , Reparación del ADN , Ubiquitina/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/genética , Daño del ADN
2.
Intellect Dev Disabil ; 62(2): 137-150, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38545817

RESUMEN

The impact of long-term services and supports on the quality of life of adults with intellectual and developmental disabilities (IDD) is not well understood given the highly complex nature of researching this topic. To support future research addressing this topic, we conducted a systematic literature review of studies addressing outcomes of adults with IDD receiving long-term services and supports. Results of this review describe current outcomes for adults with IDD who receive long-term services and supports and can be used to inform program evaluation, policy development, and future research.


Asunto(s)
Discapacidad Intelectual , Calidad de Vida , Adulto , Humanos , Discapacidades del Desarrollo/terapia , Discapacidad Intelectual/terapia , Evaluación de Programas y Proyectos de Salud
3.
Biomolecules ; 13(12)2023 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-38136628

RESUMEN

Glycine receptors (GlyRs) are glycine-gated inhibitory pentameric ligand-gated ion channels composed of α or α + ß subunits. A number of structures of these proteins have been reported, but to date, these have only revealed details of the extracellular and transmembrane domains, with the intracellular domain (ICD) remaining uncharacterised due to its high flexibility. The ICD is a region that can modulate function in addition to being critical for receptor localisation and clustering via proteins such as gephyrin. Here, we use modelling and molecular dynamics (MD) to reveal details of the ICDs of both homomeric and heteromeric GlyR. At their N and C ends, both the α and ß subunit ICDs have short helices, which are major sites of stabilising interactions; there is a large flexible loop between them capable of forming transient secondary structures. The α subunit can affect the ß subunit ICD structure, which is more flexible in a 4α2:1ß than in a 4α1:1ß GlyR. We also explore the effects of gephyrin binding by creating GlyR models bound to the gephyrin E domain; MD simulations suggest these are more stable than the unbound forms, and again there are α subunit-dependent differences, despite the fact the gephyrin binds to the ß subunit. The bound models also suggest that gephyrin causes compaction of the ICD. Overall, the data expand our knowledge of this important receptor protein and in particular clarify features of the underexplored ICD.


Asunto(s)
Simulación de Dinámica Molecular , Receptores de Glicina , Receptores de Glicina/metabolismo , Proteínas Portadoras/metabolismo , Glicina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA