Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Biochemistry ; 61(24): 2948-2960, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36454711

RESUMEN

Multidrug-resistant bacteria cause immense public health concerns as once effective antibiotics no longer work against even common infections. Concomitantly, there has been a decline in the discovery of new antibiotics, and the current global clinical pipeline is woefully inadequate, especially against resistant Gram-negative bacteria. One major contribution to Gram-negative resistance is the presence of a protective outer membrane. Consequently, an appealing option for tackling resistance is to adversely affect that outer membrane. With that in mind, we define the response regulator PhoP as a target for new 2-aminoimidazole compounds and show that they affect the integrity of the outer membrane in resistant strains of Escherichia coli and Klebsiella pneumoniae. We also provide empirical evidence for the 2-aminoimidazole mechanism of action.


Asunto(s)
Antibacterianos , Proteínas de Escherichia coli , Antibacterianos/farmacología , Bacterias Gramnegativas , Imidazoles/farmacología , Farmacorresistencia Bacteriana Múltiple , Escherichia coli/metabolismo , ADN , Pruebas de Sensibilidad Microbiana , Proteínas de Escherichia coli/farmacología
2.
Mol Microbiol ; 106(2): 223-235, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28755524

RESUMEN

With antibiotic resistance increasing at alarming rates, targets for new antimicrobial therapies must be identified. A particularly promising target is the bacterial two-component system. Two-component systems allow bacteria to detect, evaluate and protect themselves against changes in the environment, such as exposure to antibiotics and also to trigger production of virulence factors. Drugs that target the response regulator portion of two-component systems represent a potent new approach so far unexploited. Here, we focus efforts on the highly virulent bacterium Francisella tularensis tularensis. Francisella contains only three response regulators, making it an ideal system to study. In this study, we initially present the structure of the N-terminal domain of QseB, the response regulator responsible for biofilm formation. Subsequently, using binding assays, computational docking and cellular studies, we show that QseB interacts with2-aminoimidazole based compounds that impede its function. This information will assist in tailoring compounds to act as adjuvants that will enhance the effect of antibiotics.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Francisella tularensis/metabolismo , Antibacterianos/farmacología , Proteínas Bacterianas/ultraestructura , Biopelículas/efectos de los fármacos , Regulación Bacteriana de la Expresión Génica/genética , Imidazoles/metabolismo , Imidazoles/farmacología , Unión Proteica , Virulencia/efectos de los fármacos , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
3.
Biochemistry ; 51(49): 9776-8, 2012 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-23186243

RESUMEN

2-Aminoimidazoles (2AIs) have been documented to disrupt bacterial protection mechanisms, including biofilm formation and genetically encoded antibiotic resistance traits. Using Acinetobacter baumannii, we provide initial insight into the mechanism of action of a 2AI-based antibiofilm agent. Confocal microscopy confirmed that the 2AI is cell permeable, while pull-down assays identified BfmR, a response regulator that is the master controller of biofilm formation, as a target for this compound. Binding assays demonstrated specificity of the 2AI for response regulators, while computational docking provided models for 2AI-BfmR interactions. The 2AI compound studied here represents a unique small molecule scaffold that targets bacterial response regulators.


Asunto(s)
Acinetobacter baumannii/efectos de los fármacos , Proteínas Bacterianas/fisiología , Biopelículas/efectos de los fármacos , Imidazoles/farmacología , Acinetobacter baumannii/crecimiento & desarrollo , Proteínas Bacterianas/química , Microscopía Confocal , Modelos Moleculares
4.
Nat Struct Mol Biol ; 13(7): 641-7, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16799559

RESUMEN

Calbindin-D(28K) is a Ca2+-binding protein, performing roles as both a calcium buffer and calcium sensor. The NMR solution structure of Ca2+-loaded calbindin-D(28K) reveals a single, globular fold consisting of six distinct EF-hand subdomains, which coordinate Ca2+ in loops on EF1, EF3, EF4 and EF5. Target peptides from Ran-binding protein M and myo-inositol monophosphatase, along with a new target from procaspase-3, are shown to interact with the protein on a surface comprised of alpha5 (EF3), alpha8 (EF4) and the EF2-EF3 and EF4-EF5 loops. Fluorescence experiments reveal that calbindin-D(28K) adopts discrete hydrophobic states as it binds Ca2+. The structure, binding interface and hydrophobic characteristics of Ca2+-loaded calbindin-D(28K) provide the first detailed insights into how this essential protein may function. This structure is one of the largest high-resolution NMR structures and the largest monomeric EF-hand protein to be solved to date.


Asunto(s)
Calcio/metabolismo , Proteína G de Unión al Calcio S100/química , Proteína G de Unión al Calcio S100/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Calbindinas , Clonación Molecular , Enlace de Hidrógeno , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Péptidos/química , Pliegue de Proteína , Estructura Secundaria de Proteína , Ratas , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
5.
Structure ; 16(11): 1702-13, 2008 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-19000822

RESUMEN

Understanding the DNA recognition and binding by the AbrB-like family of transcriptional regulators is of significant interest since these proteins enable bacteria to elicit the appropriate response to diverse environmental stimuli. Although these "transition-state regulator" proteins have been well characterized at the genetic level, the general and specific mechanisms of DNA binding remain elusive. We present RDC-refined NMR solution structures and dynamic properties of the DNA-binding domains of three Bacillus subtilis transition-state regulators: AbrB, Abh, and SpoVT. We combined previously investigated DNase I footprinting, DNA methylation, gel-shift assays, and mutagenic and NMR studies to generate a structural model of the complex between AbrBN(55) and its cognate promoter, abrB8. These investigations have enabled us to generate a model for the specific nature of the transition-state regulator-DNA interaction, a structure that has remained elusive thus far.


Asunto(s)
Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , ADN/química , ADN/metabolismo , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Bacillus subtilis/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Sitios de Unión , Enlace de Hidrógeno , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Conformación Proteica , Termodinámica
6.
J Mol Biol ; 432(2): 343-357, 2020 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-31493408

RESUMEN

Bacteria have developed numerous protection strategies to ensure survival in harsh environments, with perhaps the most robust method being the formation of a protective biofilm. In biofilms, bacterial cells are embedded within a matrix that is composed of a complex mixture of polysaccharides, proteins, and DNA. The gram-positive bacterium Bacillus subtilis has become a model organism for studying regulatory networks directing biofilm formation. The phenotypic transition from a planktonic to biofilm state is regulated by the activity of the transcriptional repressor, SinR, and its inactivation by its primary antagonist, SinI. In this work, we present the first full-length structural model of tetrameric SinR using a hybrid approach combining high-resolution solution nuclear magnetic resonance (NMR), chemical cross-linking, mass spectrometry, and molecular docking. We also present the solution NMR structure of the antagonist SinI dimer and probe the mechanism behind the SinR-SinI interaction using a combination of biochemical and biophysical techniques. As a result of these findings, we propose that SinI utilizes a residue replacement mechanism to block SinR multimerization, resulting in diminished DNA binding and concomitant decreased repressor activity. Finally, we provide an evidence-based mechanism that confirms how disruption of the SinR tetramer by SinI regulates gene expression.


Asunto(s)
Bacillus subtilis/ultraestructura , Proteínas Bacterianas/ultraestructura , Proteínas de Unión al ADN/ultraestructura , Secuencia de Aminoácidos/genética , Bacillus subtilis/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Biopelículas/crecimiento & desarrollo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Regulación Bacteriana de la Expresión Génica/genética , Simulación del Acoplamiento Molecular , Mutación/genética , Unión Proteica/genética , Conformación Proteica
7.
Biochemistry ; 48(36): 8603-14, 2009 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-19658395

RESUMEN

Calbindin-D28k is a calcium binding protein with six EF hand domains. Calbindin-D28k is unique in that it functions as both a calcium buffer and a sensor protein. It is found in many tissues, including brain, pancreas, kidney, and intestine, playing important roles in each. Calbindin-D28k is known to bind four calcium ions and upon calcium binding undergoes a conformational change. The structure of apo calbindin-D28k is in an ordered state, transitioning into a disordered state as calcium is bound. Once fully loaded with four calcium ions, it again takes on an ordered state. The solution structure of disulfide-reduced holo-calbindin-D28k has been determined by NMR, while the structure of apo calbindin-D28k has yet to be determined. Differential surface modification of lysine and histidine residues analyzed by mass spectrometry has been used in this study to identify, for the first time, the specific regions of calbindin-D28k undergoing conformational changes between the holo and apo states. Using differential surface modification in combination with mass spectrometry, EF hands 1 and 4 as well as the linkers before EF hand 1 and the linkers between EF hands 4 and 5 and EF hands 5 and 6 were identified as regions of conformational change between apo and holo calbindin-D28k. Under the experimental conditions employed, EF hands 2 and 6, which are known not to bind calcium, were unaffected in either form. EF hand 2 is highly accessible; however, EF hand 6 was determined not to be surface accessible in either form. Previous research has identified a disulfide bond between cysteines 94 and 100 in the holo state. Until now, it was unknown whether this bond also exists in the apo form. Our data confirm the presence of the disulfide bond between cysteines 94 and 100 in the holo form and indicate that there is predominantly no disulfide bond between these residues in the apoprotein.


Asunto(s)
Conformación Proteica , Proteína G de Unión al Calcio S100/química , Proteína G de Unión al Calcio S100/metabolismo , Secuencia de Aminoácidos , Animales , Apoproteínas/química , Calbindina 1 , Calbindinas , Cisteína/química , Disulfuros/química , Motivos EF Hand , Enlace de Hidrógeno , Espectroscopía de Resonancia Magnética , Datos de Secuencia Molecular , Unión Proteica , Estructura Terciaria de Proteína , Ratas , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem
8.
Biochemistry ; 47(30): 7782-4, 2008 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-18588317

RESUMEN

Short-lived protein interactions determine signal transduction specificity among genetically amplified, structurally identical two-component signaling systems. Interacting protein pairs evolve recognition precision by varying residues at specific positions in the interaction surface consistent with constraints of charge, size, and chemical properties. Such positions can be detected by covariance analyses of two-component protein databases. Here, covariance is shown to identify a cluster of co-evolving dynamic residues in two-component proteins. NMR dynamics and structural studies of both wild-type and mutant proteins in this cluster suggest that motions serve to precisely arrange the site of phosphoryl transfer within the complex.


Asunto(s)
Proteínas/química , Proteínas/metabolismo , Transducción de Señal , Análisis de Varianza , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Sitios de Unión , Espectroscopía de Resonancia Magnética , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
9.
J Mol Biol ; 430(6): 806-821, 2018 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-29438671

RESUMEN

The rise of drug-resistant bacterial infections coupled with decreasing antibiotic efficacy poses a significant challenge to global health care. Acinetobacter baumannii is an insidious, emerging bacterial pathogen responsible for severe nosocomial infections aided by its ability to form biofilms. The response regulator BfmR, from the BfmR/S two-component system, is the master regulator of biofilm initiation in A. baumannii and is a tractable therapeutic target. Here we present the structure of A. baumannii BfmR using a hybrid approach combining X-ray crystallography, nuclear magnetic resonance spectroscopy, chemical crosslinking mass spectrometry, and molecular modeling. We also show that BfmR binds the previously proposed bfmRS promoter sequence with moderate affinity. While BfmR shares many traits with other OmpR/PhoB family response regulators, some unusual properties were observed. Most importantly, we observe that when phosphorylated, BfmR binds this promoter sequence with a lower affinity than when not phosphorylated. All other OmpR/PhoB family members studied to date show an increase in DNA-binding affinity upon phosphorylation. Understanding the structural and biochemical mechanisms of BfmR will aid in the development of new antimicrobial therapies.


Asunto(s)
Acinetobacter baumannii/metabolismo , Proteínas Bacterianas/química , Biopelículas/crecimiento & desarrollo , Proteínas de Unión al ADN/metabolismo , Acinetobacter baumannii/efectos de los fármacos , Acinetobacter baumannii/genética , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Biopelículas/efectos de los fármacos , Clonación Molecular , Cristalografía por Rayos X , Proteínas de Unión al ADN/genética , Regulación Bacteriana de la Expresión Génica , Modelos Moleculares , Fosforilación , Regiones Promotoras Genéticas , Conformación Proteica
10.
Front Mol Biosci ; 5: 15, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29487854

RESUMEN

2-aminoimidazole (2-AI) compounds inhibit the formation of bacterial biofilms, disperse preformed biofilms, and re-sensitize multidrug resistant bacteria to antibiotics. 2-AIs have previously been shown to interact with bacterial response regulators, but the mechanism of interaction is still unknown. Response regulators are one part of two-component systems (TCS). TCSs allow cells to respond to changes in their environment, and are used to trigger quorum sensing, virulence factors, and antibiotic resistance. Drugs that target the TCS signaling process can inhibit pathogenic behavior, making this a potent new therapeutic approach that has not yet been fully exploited. We previously laid the groundwork for the interaction of the Acinetobacter baumannii response regulator BfmR with an early 2-AI derivative. Here, we further investigate the response regulator/2-AI interaction and look at a wider library of 2-AI compounds. By combining molecular modeling with biochemical and cellular studies, we expand on a potential mechanism for interaction between response regulators and 2-AIs. We also establish that Francisella tularensis/novicida, encoding for only three known response regulators, can be a model system to study the interaction between 2-AIs and response regulators. We show that knowledge gained from studying Francisella can be applied to the more complex A. baumannii system, which contains over 50 response regulators. Understanding the impact of 2-AIs on response regulators and their mechanism of interaction will lead to the development of more potent compounds that will serve as adjuvant therapies to broad-range antibiotics.

11.
FEBS Lett ; 581(24): 4778-82, 2007 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-17880944

RESUMEN

Calbindin-D28k is known to function as a calcium-buffering protein in the cell. Moreover, recent evidence shows that it also plays a role as a sensor. Using circular dichroism and NMR, we show that calbindin-D28k undergoes significant conformational changes upon binding calcium, whereas only minor changes occur when binding target peptides in its Ca(2+)-loaded state. NMR experiments also identify residues that undergo chemical shift changes as a result of peptide binding. The subsequent use of computational protein-protein docking protocols produce a model describing the interaction interface between calbindin-D28k and its target peptides.


Asunto(s)
Calcio/metabolismo , Péptidos/metabolismo , Proteína G de Unión al Calcio S100/metabolismo , Animales , Calbindina 1 , Calbindinas , Dicroismo Circular , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Estructura Terciaria de Proteína , Ratas , Volumetría
12.
FEBS Lett ; 581(7): 1425-9, 2007 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-17350627

RESUMEN

Several alanine mutations in the response regulator Spo0F induce hypersporulation in Bacillus subtilis. L66A, I90A and H101A mutants are purported to be involved in contacts stabilizing the orientation of the alpha4-helix and hence the beta4-alpha4 kinase recognition loop. Y13A is thought to affect the orientation of the alpha1-helix and consequently phosphatase action. Using comparative NMR chemical shift analyses for these mutants, we have confirmed these suppositions and isolated residues in Spo0F critical in sensor kinases discrimination. In addition, we discuss how buried residues and intra-protein communication networks contribute to precise molecular recognition by ensuring that the correct surface is presented.


Asunto(s)
Bacillus subtilis/fisiología , Proteínas Bacterianas/química , Proteínas Quinasas/química , Proteínas Quinasas/metabolismo , Alanina/química , Alanina/genética , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Bacillus subtilis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Histidina Quinasa , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica , Mapeo de Interacción de Proteínas , Estructura Secundaria de Proteína , Esporas Bacterianas
13.
Methods Enzymol ; 422: 141-69, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17628138

RESUMEN

The two-component signal transduction system is a ubiquitous signaling module present in most prokaryotic and some eukaryotic systems. Two conserved components, a histidine protein kinase (HPK) protein and a response regulator (RR) protein, function as a biological switch, sensing and responding to changes in the environment, thereby eliciting a specific response. Extensive studies have classified the HPK and RR proteins using primary sequence characteristics, domain identity, domain organization, and biological function. We propose that structural analysis of the surface properties of the highly conserved receiver domain of RRs can be used to build on previous classification methods. Our studies of the OmpR subfamily RRs in Bacillus subtilis and Escherichia coli reveal a notable correlation between the RR receiver domain surface classification and previous classification of cognate HPK proteins. We have extended these studies to analyze the receiver domains of all predicted RR proteins in the marine-dwelling bacterium Vibrio vulnificus.


Asunto(s)
Bacillus subtilis/fisiología , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Escherichia coli/fisiología , Fosfoproteínas Fosfatasas/química , Fosfoproteínas Fosfatasas/metabolismo , Proteínas Quinasas/metabolismo , Transducción de Señal/fisiología , Transactivadores/química , Transactivadores/metabolismo , Bacillus subtilis/enzimología , Histidina Quinasa , Modelos Biológicos , Modelos Moleculares , Conformación Proteica , Propiedades de Superficie
14.
Curr Drug Deliv ; 12(2): 223-30, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25348099

RESUMEN

Acinetobacter baumannii has quickly become one of the most insidious and prevalent nosocomial infections. Recently, the reverse-amide class of 2-aminoimidazole compounds (RA-2AI) was found both to prevent A. baumannii biofilm formation and also to disperse preexisting formations, putatively through interactions with cytosolic response regulators. Here we focus on how this class of antibiofilm agent traverses cellular membranes. Following the discovery of dosage-dependent growth rate changes, the cellular effects of RA-2AI were investigated using a combination of molecular assays and microscopic techniques. It was found that RA-2AI exposure has measureable effects on the bacterial membranes, resulting in a period of increased permeability and visible structural aberrations. Based on these results, we propose a model that describes how the structure of RA-2AI allows it to insert itself into and disrupt the fluidity of the membrane, creating an opportunity for increased molecular permeability.


Asunto(s)
Acinetobacter baumannii/efectos de los fármacos , Amidas/química , Biopelículas/efectos de los fármacos , Permeabilidad de la Membrana Celular/efectos de los fármacos , Imidazoles/química , Antibacterianos/química , Antibacterianos/farmacología , Células Cultivadas , Infección Hospitalaria , Imidazoles/farmacología , Pruebas de Sensibilidad Microbiana
15.
FEBS Lett ; 554(3): 231-6, 2003 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-14623071

RESUMEN

The omnipresent bacterial switch known as a two-component system is comprised of a response regulator and a sensor kinase with which it interacts. Sensor kinases have been classified and further sub-classified into groups based on their sequence similarity, loop lengths and domain organization. Response regulators have been classified predominantly by the identity and function of their output domains. Here, comparative based homology modeling of the receiver domains of the OmpR sub-family of response regulators in Bacillus subtilis and Escherichia coli suggests further sub-classification is possible. A color-coded scale is used to show trends in surface hydrophobicity. For the OmpR receiver domains modeled these trends allow further sub-classification. The specific surface regions used for this sub-classification procedure correlate with clusters of residues that are important for interaction with cognate four helix bundle HisKA/Hpt domains.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/clasificación , Transactivadores/química , Transactivadores/clasificación , Bacillus subtilis/química , Bacillus subtilis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Escherichia coli/química , Escherichia coli/metabolismo , Genes Reguladores , Histidina Quinasa , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Homología Estructural de Proteína , Transactivadores/genética
16.
Biomol NMR Assign ; 8(1): 177-9, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23604692

RESUMEN

Vibrio anguillarum is a biofilm forming Gram-negative bacterium that survives prolonged periods in seawater and causes vibriosis in marine life. A quorum-sensing signal transduction pathway initiates biofilm formation in response to environmental stresses. The phosphotransferase protein VanU is the focal point of the quorum-sensing pathway and facilitates the regulation between independent phosphorelay systems that activate or repress biofilm formation. Here we report the (1)H, (13)C, and (15)N backbone and side chain resonance assignments and secondary structure prediction for VanU from V. anguillarum.


Asunto(s)
Proteínas Bacterianas/química , Resonancia Magnética Nuclear Biomolecular , Fosfotransferasas/química , Vibrio/metabolismo , Estructura Secundaria de Proteína
17.
Biomol NMR Assign ; 8(1): 67-70, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23264007

RESUMEN

Acinetobacter baumannii is a Gram-negative pathogen responsible for severe nocosomial infections by forming biofilms in healthcare environments. The two-domain response regulator BfmR has been shown to be the master controller for biofilm formation. Inactivation of BfmR resulted in an abolition of pili production and consequently biofilm creation. Here we report backbone and sidechain resonance assignments and secondary structure prediction for the C-terminal domain of BfmR (residues 130-238) from A. baumannii.


Asunto(s)
Acinetobacter baumannii/metabolismo , Proteínas Bacterianas/química , Resonancia Magnética Nuclear Biomolecular , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
18.
Structure ; 22(11): 1650-6, 2014 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-25308864

RESUMEN

The AbrB protein from Bacillus subtilis is a DNA-binding global regulator controlling the onset of a vast array of protective functions under stressful conditions. Such functions include biofilm formation, antibiotic production, competence development, extracellular enzyme production, motility, and sporulation. AbrB orthologs are known in a variety of prokaryotic organisms, most notably in all infectious strains of Clostridia, Listeria, and Bacilli. Despite its central role in bacterial response and defense, its structure has been elusive because of its highly dynamic character. Orienting its N- and C-terminal domains with respect to one another has been especially problematic. Here, we have generated a structure of full-length, tetrameric AbrB using nuclear magnetic resonance, chemical crosslinking, and mass spectrometry. We note that AbrB possesses a strip of positive electrostatic potential encompassing its DNA-binding region and that its C-terminal domain aids in DNA binding.


Asunto(s)
Bacillus subtilis/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Sitios de Unión , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Simulación del Acoplamiento Molecular , Multimerización de Proteína , Estructura Secundaria de Proteína
19.
J Med Chem ; 57(17): 7450-8, 2014 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-25137478

RESUMEN

Recent efforts toward combating antibiotic resistance in bacteria have focused on Gram-positive bacteria; however, multidrug-resistant Gram-negative bacteria pose a significant risk to public health. An orthogonal approach to the development of new antibiotics is to develop adjuvant compounds that enhance the susceptibility of drug-resistant strains of bacteria to currently approved antibiotics. This paper describes the synthesis and biological activity of a library of aryl amide 2-aminoimidazoles based on a lead structure from an initial screen. A small molecule was identified from this library that is capable of lowering the minimum inhibitory concentration of ß-lactam antibiotics by up to 64-fold.


Asunto(s)
Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Bacterias Gramnegativas/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Resistencia betalactámica/efectos de los fármacos , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Bacterias Gramnegativas/clasificación , Hemólisis/efectos de los fármacos , Humanos , Queratinocitos/citología , Queratinocitos/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Ovinos , Bibliotecas de Moléculas Pequeñas/química
20.
J Mol Biol ; 426(9): 1911-24, 2014 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-24534728

RESUMEN

Bacteria respond to adverse environmental conditions by switching on the expression of large numbers of genes that enable them to adapt to unfavorable circumstances. In Bacillus subtilis, many adaptive genes are under the negative control of the global transition state regulator, the repressor protein AbrB. Stressful conditions lead to the de-repression of genes under AbrB control. Contributing to this de-repression is AbbA, an anti-repressor that binds to and blocks AbrB from binding to DNA. Here, we have determined the NMR structure of the functional AbbA dimer, confirmed that it binds to the N-terminal DNA-binding domain of AbrB, and have provided an initial description for the interaction using computational docking procedures. Interestingly, we show that AbbA has structural and surface characteristics that closely mimic the DNA phosphate backbone, enabling it to readily carry out its physiological function.


Asunto(s)
Bacillus subtilis/química , Proteínas Bacterianas/química , Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Simulación del Acoplamiento Molecular , Conformación Proteica , Multimerización de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA