Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Nano Lett ; 23(3): 1068-1076, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36637381

RESUMEN

The integration of metallic contacts with two-dimensional (2D) semiconductors is routinely required for the fabrication of nanoscale devices. However, nanometer-scale variations in the 2D/metal interface can drastically alter the local optoelectronic properties. Here, we map local excitonic changes of the 2D semiconductor MoS2 in contact with Au. We utilize a suspended and epitaxially grown 2D/metal platform that allows correlated electron energy-loss spectroscopy (EELS) and angle resolved photoelectron spectroscopy (nanoARPES) mapping. Spatial localization of MoS2 excitons uncovers an additional EELS peak related to the MoS2/Au interface. NanoARPES measurements indicate that Au-S hybridization decreases substantially with distance from the 2D/metal interface, suggesting that the observed EELS peak arises due to dielectric screening of the excitonic Coulomb interaction. Our results suggest that increasing the van der Waals distance could optimize excitonic spectra of mixed-dimensional 2D/3D interfaces and highlight opportunities for Coulomb engineering of exciton energies by the local dielectric environment or moiré engineering.

2.
Nano Lett ; 2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35852159

RESUMEN

Understanding structure at the interface between two-dimensional (2D) materials and 3D metals is crucial for designing novel 2D/3D heterostructures and improving the performance of many 2D material devices. Here, we quantify and discuss the 2D/3D interface structure and the 3D morphology in several materials systems. We first deposit faceted Au nanoislands on graphene and transition metal dichalcogenides, using measurements of the equilibrium island shape to determine values for the 2D/Au interface energy and examining the role of surface reconstructions, chemical identity, and defects on the grown structures. We then deposit the technologically relevant metals Ti and Nb under conditions where kinetic rather than thermodynamic factors govern growth. We describe a transition from dendritic to faceted islands as a function of growth temperature and discuss the factors determining island shape in these materials systems. Finally, we show that suspended 2D materials enable the fabrication of a novel type of 3D/2D/3D heterostructure and discuss the growth mechanism. We suggest that emerging nanodevices will utilize versatile fabrication of 2D/3D heterostructures with well-characterized interfaces and morphologies.

3.
Sensors (Basel) ; 18(10)2018 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-30336557

RESUMEN

Monitoring of bacteria concentrations is of great importance in drinking water management. Continuous real-time monitoring enables better microbiological control of the water and helps prevent contaminated water from reaching the households. We have developed a microfluidic sensor with the potential to accurately assess bacteria levels in drinking water in real-time. Multi frequency electrical impedance spectroscopy is used to monitor a liquid sample, while it is continuously passed through the sensor. We investigate three aspects of this sensor: First we show that the sensor is able to differentiate Escherichia coli (Gram-negative) bacteria from solid particles (polystyrene beads) based on an electrical response in the high frequency phase and individually enumerate the two samples. Next, we demonstrate the sensor's ability to measure the bacteria concentration by comparing the results to those obtained by the traditional CFU counting method. Last, we show the sensor's potential to distinguish between different bacteria types by detecting different signatures for S. aureus and E. coli mixed in the same sample. Our investigations show that the sensor has the potential to be extremely effective at detecting sudden bacterial contaminations found in drinking water, and eventually also identify them.


Asunto(s)
Técnicas Bacteriológicas/métodos , Agua Potable/microbiología , Citometría de Flujo/métodos , Técnicas Bacteriológicas/instrumentación , Impedancia Eléctrica , Diseño de Equipo , Escherichia coli , Citometría de Flujo/instrumentación , Técnicas Analíticas Microfluídicas/instrumentación , Staphylococcus aureus , Microbiología del Agua
4.
ACS Nano ; 18(21): 13458-13467, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38739873

RESUMEN

van der Waals (vdW) magnetic materials, such as Cr2Ge2Te6 (CGT), show promise for memory and logic applications. This is due to their broadly tunable magnetic properties and the presence of topological magnetic features such as skyrmionic bubbles. A systematic study of thickness and oxidation effects on magnetic domain structures is important for designing devices and vdW heterostructures for practical applications. Here, we investigate thickness effects on magnetic properties, magnetic domains, and bubbles in oxidation-controlled CGT crystals. We find that CGT exposed to ambient conditions for 5 days forms an oxide layer approximately 5 nm thick. This oxidation leads to a significant increase in the oxidation state of the Cr ions, indicating a change in local magnetic properties. This is supported by real-space magnetic texture imaging through Lorentz transmission electron microscopy. By comparing the thickness-dependent saturation field of oxidized and pristine crystals, we find that oxidation leads to a nonmagnetic surface layer that is thicker than the oxide layer alone. We also find that the stripe domain width and skyrmionic bubble size are strongly affected by the crystal thickness in pristine crystals. These findings underscore the impact of thickness and surface oxidation on the properties of CGT, such as saturation field and domain/skyrmionic bubble size, and suggest a pathway for manipulating magnetic properties through a controlled oxidation process.

5.
ACS Nano ; 16(7): 10364-10371, 2022 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-35849654

RESUMEN

Control of nucleation sites is an important goal in materials growth: nuclei in regular arrays may show emergent photonic or electronic behavior, and once the nuclei coalesce into thin films, the nucleation density influences parameters such as surface roughness, stress, and grain boundary structure. Tailoring substrate properties to control nucleation is therefore a powerful tool for designing functional thin films and nanomaterials. Here, we examine nucleation control for metals deposited on two-dimensional materials in a situation where substrate effects are absent and heterogeneous nucleation sites are minimized. Through quantification of faceted, epitaxial Au island nucleation on graphene, we show that ultralow nucleation densities with nuclei several micrometers apart can be achieved on suspended graphene under conditions where we measure 2-3 orders of magnitude higher nucleation density on the adjacent supported substrate. We estimate diffusion distances using nucleation theory and find a strong sensitivity of nucleation and diffusion to suspended graphene thickness. Finally, we discuss the role of surface roughness as the main factor determining nucleation density on clean free-standing graphene.

6.
Nat Commun ; 12(1): 1290, 2021 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-33637704

RESUMEN

The atomic structure at the interface between two-dimensional (2D) and three-dimensional (3D) materials influences properties such as contact resistance, photo-response, and high-frequency electrical performance. Moiré engineering is yet to be utilized for tailoring this 2D/3D interface, despite its success in enabling correlated physics at 2D/2D interfaces. Using epitaxially aligned MoS2/Au{111} as a model system, we demonstrate the use of advanced scanning transmission electron microscopy (STEM) combined with a geometric convolution technique in imaging the crystallographic 32 Å moiré pattern at the 2D/3D interface. This moiré period is often hidden in conventional electron microscopy, where the Au structure is seen in projection. We show, via ab initio electronic structure calculations, that charge density is modulated according to the moiré period, illustrating the potential for (opto-)electronic moiré engineering at the 2D/3D interface. Our work presents a general pathway to directly image periodic modulation at interfaces using this combination of emerging microscopy techniques.

7.
ACS Nano ; 13(2): 2281-2288, 2019 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-30625274

RESUMEN

We study the oxidation of clean suspended mono- and few-layer graphene in real time by in situ environmental transmission electron microscopy. At an oxygen pressure below 0.1 mbar, we observe anisotropic oxidation in which armchair-oriented hexagonal holes are formed with a sharp edge roughness below 1 nm. At a higher pressure, we observe an increasingly isotropic oxidation, eventually leading to irregular holes at a pressure of 6 mbar. In addition, we find that few-layer flakes are stable against oxidation at temperatures up to at least 1000 °C in the absence of impurities and electron-beam-induced defects. These findings show, first, that the oxidation behavior of mono- and few-layer graphene depends critically on the intrinsic roughness, cleanliness and any imposed roughness or additional reactivity from a supporting substrate and, second, that the activation energy for oxidation of pristine suspended few-layer graphene is up to 43% higher than previously reported for graphite. In addition, we have developed a cleaning scheme that results in the near-complete removal of hydrocarbon residues over the entire visible sample area. These results have implications for applications of graphene where edge roughness can critically affect the performance of devices and more generally highlight the surprising (meta)stability of the basal plane of suspended bilayer and thicker graphene toward oxidative environments at high temperature.

8.
Nat Commun ; 10(1): 2957, 2019 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-31273207

RESUMEN

Only a few of the vast range of potential two-dimensional materials (2D) have been isolated or synthesised to date. Typically, 2D materials are discovered by mechanically exfoliating naturally occurring bulk crystals to produce atomically thin layers, after which a material-specific vapour synthesis method must be developed to grow interesting candidates in a scalable manner. Here we show a general approach for synthesising thin layers of two-dimensional binary compounds. We apply the method to obtain high quality, epitaxial MoS2 films, and extend the principle to the synthesis of a wide range of other materials-both well-known and never-before isolated-including transition metal sulphides, selenides, tellurides, and nitrides. This approach greatly simplifies the synthesis of currently known materials, and provides a general framework for synthesising both predicted and unexpected new 2D compounds.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA