Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(26): e2111506119, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35737835

RESUMEN

Macroautophagy promotes cellular homeostasis by delivering cytoplasmic constituents to lysosomes for degradation [Mizushima, Nat. Cell Biol. 20, 521-527 (2018)]. However, while most studies have focused on the mechanisms of protein degradation during this process, we report here that macroautophagy also depends on glycan degradation via the glycosidase, α-l-fucosidase 1 (FUCA1), which removes fucose from glycans. We show that cells lacking FUCA1 accumulate lysosomal glycans, which is associated with impaired autophagic flux. Moreover, in a mouse model of fucosidosis-a disease characterized by inactivating mutations in FUCA1 [Stepien et al., Genes (Basel) 11, E1383 (2020)]-glycan and autophagosome/autolysosome accumulation accompanies tissue destruction. Mechanistically, using lectin capture and mass spectrometry, we identified several lysosomal enzymes with altered fucosylation in FUCA1-null cells. Moreover, we show that the activity of some of these enzymes in the absence of FUCA1 can no longer be induced upon autophagy stimulation, causing retardation of autophagic flux, which involves impaired autophagosome-lysosome fusion. These findings therefore show that dysregulated glycan degradation leads to defective autophagy, which is likely a contributing factor in the etiology of fucosidosis.


Asunto(s)
Fucosidosis , Macroautofagia , Polisacáridos , Animales , Fucosidosis/genética , Fucosidosis/metabolismo , Lisosomas/metabolismo , Macroautofagia/fisiología , Ratones , Polisacáridos/metabolismo , alfa-L-Fucosidasa/genética , alfa-L-Fucosidasa/metabolismo
2.
Int J Mol Sci ; 22(17)2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34502073

RESUMEN

Though effective in treating various types of cancer, the chemotherapeutic doxorubicin (DOX) is associated with skeletal muscle wasting and fatigue. The purpose of this study was to assess muscle function in situ following DOX administration in mice. Furthermore, pre-treatments with exercise (EX) or metformin (MET) were used in an attempt to preserve muscle function following DOX. Mice were assigned to the following groups: control, DOX, DOX + EX, or DOX + MET, and were given a single injection of DOX (15 mg/kg) or saline 3 days prior to sacrifice. Preceding the DOX injection, DOX + EX mice performed 60 min/day of running for 5 days, while DOX + MET mice received 5 daily oral doses of 500 mg/kg MET. Gastrocnemius-plantaris-soleus complex function was assessed in situ via direct stimulation of the sciatic nerve. DOX treatment increased time to half-relaxation following contractions, indicating impaired recovery (p < 0.05). Interestingly, EX prevented any increase in half-relaxation time, while MET did not. An impaired relaxation rate was associated with a reduction in SERCA1 protein content (p = 0.07) and AMPK phosphorylation (p < 0.05). There were no differences between groups in force production or mitochondrial respiration. These results suggest that EX, but not MET may be an effective strategy for the prevention of muscle fatigue following DOX administration in mice.


Asunto(s)
Metformina/farmacología , Fatiga Muscular , Músculo Esquelético/fisiología , Carrera , Quinasas de la Proteína-Quinasa Activada por el AMP , Animales , Doxorrubicina/toxicidad , Ratones , Ratones Endogámicos C57BL , Mitocondrias Musculares/efectos de los fármacos , Mitocondrias Musculares/metabolismo , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Proteínas Quinasas/metabolismo
3.
Int J Mol Sci ; 21(17)2020 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-32872407

RESUMEN

OBJECTIVE: The rampant growth of obesity worldwide has stimulated explosive research into human metabolism. Energy expenditure has been shown to be altered by diets differing in macronutrient composition, with low-carbohydrate, ketogenic diets eliciting a significant increase over other interventions. The central aim of this study was to explore the effects of the ketone ß-hydroxybutyrate (ßHB) on mitochondrial bioenergetics in adipose tissue. METHODS: We employed three distinct systems-namely, cell, rodent, and human models. Following exposure to elevated ßHB, we obtained adipose tissue to quantify mitochondrial function. RESULTS: In every model, ßHB robustly increased mitochondrial respiration, including an increase of roughly 91% in cultured adipocytes, 113% in rodent subcutaneous adipose tissue (SAT), and 128% in human SAT. However, this occurred without a commensurate increase in adipose ATP production. Furthermore, in cultured adipocytes and rodent adipose, we quantified and observed an increase in the gene expression involved in mitochondrial biogenesis and uncoupling status following ßHB exposure. CONCLUSIONS: In conclusion, ßHB increases mitochondrial respiration, but not ATP production, in mammalian adipocytes, indicating altered mitochondrial coupling. These findings may partly explain the increased metabolic rate evident in states of elevated ketones, and may facilitate the development of novel anti-obesity interventions.


Asunto(s)
Ácido 3-Hidroxibutírico/administración & dosificación , Adipocitos/citología , Mitocondrias/metabolismo , Grasa Subcutánea/metabolismo , Ácido 3-Hidroxibutírico/farmacología , Células 3T3-L1 , Adenosina Trifosfato/metabolismo , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Adulto , Animales , Células Cultivadas , Metabolismo Energético/efectos de los fármacos , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Redes Reguladoras de Genes/efectos de los fármacos , Humanos , Masculino , Ratones , Mitocondrias/efectos de los fármacos , Ratas , Grasa Subcutánea/efectos de los fármacos
4.
Am J Physiol Endocrinol Metab ; 316(5): E922-E930, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30888858

RESUMEN

Doxorubicin (DOX) is an effective chemotherapeutic treatment with lasting side effects in heart and skeletal muscle. DOX is known to bind with iron, contributing to oxidative damage resulting in cardiac and skeletal muscle toxicity. However, major cellular changes to iron regulation in response to DOX are poorly understood in liver, heart, and skeletal muscle. Additionally, two cotreatments, exercise (EX) and metformin (MET), were studied for their effectiveness in reducing DOX toxicity by ameliorating iron dysregulation and preventing oxidative stress. The purposes of this study were to 1) characterize the DOX-induced changes of the major iron regulation pathway in liver, heart, and skeletal muscle and 2) to determine whether EX and MET exert their benefits by minimizing DOX-induced iron dysregulation. Mice were assigned to receive saline or DOX (15 mg/kg) treatments, paired with either EX (5 days) or MET (500 mg/kg), and were euthanized 3 days after DOX treatment. Results suggest that the cellular response to DOX is protective against oxidative stress by reducing iron availability. DOX increased iron storage capacity through elevated ferritin levels in liver, heart, and skeletal muscle. DOX reduced iron transport capacity through reduced transferrin receptor levels in heart and skeletal muscle. EX and MET cotreatments had protective effects in the liver through reduced transferrin receptor levels. At 3 days after DOX, oxidative stress was mild, as shown by normal glutathione and lipid peroxidation levels. Together these results suggest that the cellular response to reduce iron availability in response to DOX treatment is sufficient to match oxidative stress.


Asunto(s)
Antibióticos Antineoplásicos/farmacología , Doxorrubicina/farmacología , Hipoglucemiantes/farmacología , Hierro/metabolismo , Metformina/farmacología , Condicionamiento Físico Animal , Animales , Glutatión/efectos de los fármacos , Glutatión/metabolismo , Corazón/efectos de los fármacos , Peroxidación de Lípido/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Ratones , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Miocardio/metabolismo , Estrés Oxidativo/efectos de los fármacos , Receptores de Transferrina/efectos de los fármacos , Receptores de Transferrina/metabolismo
5.
FASEB J ; 32(6): 3070-3084, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29401626

RESUMEN

The breast cancer type 1 susceptibility protein (Brca1) is a regulator of DNA repair in mammary gland cells; however, recent cell culture evidence suggests that Brca1 influences other processes, including those in nonmammary cells. In this study, we sought to determine whether Brca1 is necessary for metabolic regulation of skeletal muscle using a novel in vivo mouse model. We developed an inducible skeletal muscle-specific Brca1knockout (BRCA1KOsmi) model to test whether Brca1 expression is necessary for maintenance of metabolic function of skeletal muscle when exposed to a high-fat diet (HFD). Our data demonstrated that deletion of Brca1 prevented HFD-induced alterations in glucose and insulin tolerance. Irrespective of diet, BRCA1KOsmi mice exhibited significantly lower ADP-stimulated complex I mitochondrial respiration rates compared to age-matched wild-type (WT) mice. The data show that Brca1 has the ability to localize to the mitochondria in skeletal muscle and that BRCA1KOsmi mice exhibit higher whole-body CO2 production, respiratory exchange ratio, and energy expenditure, compared with the WT mice. Our results demonstrate that loss of Brca1 in skeletal muscle leads to dysregulated metabolic function, characterized by decreased mitochondrial respiration. Thus, any condition that results in loss of Brca1 function could induce metabolic imbalance in skeletal muscle.-Jackson, K. C., Tarpey, M. D., Valencia, A. P., Iñigo, M. R., Pratt, S. J., Patteson, D. J., McClung, J. M., Lovering, R. M., Thomson, D. M., Spangenburg, E. E. Induced Cre-mediated knockdown of Brca1 in skeletal muscle reduces mitochondrial respiration and prevents glucose intolerance in adult mice on a high-fat diet.


Asunto(s)
Grasas de la Dieta/efectos adversos , Técnicas de Silenciamiento del Gen , Intolerancia a la Glucosa/prevención & control , Integrasas , Mitocondrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Consumo de Oxígeno , Proteínas Supresoras de Tumor/deficiencia , Animales , Proteína BRCA1 , Grasas de la Dieta/farmacología , Intolerancia a la Glucosa/inducido químicamente , Intolerancia a la Glucosa/genética , Intolerancia a la Glucosa/metabolismo , Ratones , Ratones Noqueados , Mitocondrias Musculares/genética , Mitocondrias Musculares/patología , Músculo Esquelético/patología , Proteínas Supresoras de Tumor/metabolismo
6.
Int J Mol Sci ; 19(10)2018 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-30314396

RESUMEN

AMPK (5'-adenosine monophosphate-activated protein kinase) is heavily involved in skeletal muscle metabolic control through its regulation of many downstream targets. Because of their effects on anabolic and catabolic cellular processes, AMPK plays an important role in the control of skeletal muscle development and growth. In this review, the effects of AMPK signaling, and those of its upstream activator, liver kinase B1 (LKB1), on skeletal muscle growth and atrophy are reviewed. The effect of AMPK activity on satellite cell-mediated muscle growth and regeneration after injury is also reviewed. Together, the current data indicate that AMPK does play an important role in regulating muscle mass and regeneration, with AMPKα1 playing a prominent role in stimulating anabolism and in regulating satellite cell dynamics during regeneration, and AMPKα2 playing a potentially more important role in regulating muscle degradation during atrophy.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Músculo Esquelético/patología , Músculo Esquelético/fisiología , Regeneración , Transducción de Señal , Animales , Biomarcadores , Metabolismo Energético , Activación Enzimática , Humanos , Hipertrofia , Desarrollo de Músculos , Fibras Musculares Esqueléticas/patología , Fibras Musculares Esqueléticas/fisiología , Músculo Esquelético/metabolismo , Tamaño de los Órganos , Cicatrización de Heridas
7.
Int J Mol Sci ; 19(8)2018 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-30071599

RESUMEN

The clinical benefit of ketosis has historically and almost exclusively centered on neurological conditions, lending insight into how ketones alter mitochondrial function in neurons. However, there is a gap in our understanding of how ketones influence mitochondria within skeletal muscle cells. The purpose of this study was to elucidate the specific effects of ß-hydroxybutyrate (ß-HB) on muscle cell mitochondrial physiology. In addition to increased cell viability, murine myotubes displayed beneficial mitochondrial changes evident in reduced H2O2 emission and less mitochondrial fission, which may be a result of a ß-HB-induced reduction in ceramides. Furthermore, muscle from rats in sustained ketosis similarly produced less H2O2 despite an increase in mitochondrial respiration and no apparent change in mitochondrial quantity. In sum, these results indicate a general improvement in muscle cell mitochondrial function when ß-HB is provided as a fuel.


Asunto(s)
Ácido 3-Hidroxibutírico/farmacología , Ceramidas/metabolismo , Mitocondrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Consumo de Oxígeno/efectos de los fármacos , Animales , Ratones , Músculo Esquelético/citología
8.
Biochem Soc Trans ; 43(2): 217-21, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25849920

RESUMEN

The discovery of the zDHHC family of S-acyltransferase enzymes has been one of the major breakthroughs in the S-acylation field. Now, more than a decade since their discovery, major questions centre on profiling the substrates of individual zDHHC enzymes (there are 24 ZDHHC genes and several hundred S-acylated proteins), defining the mechanisms of enzyme-substrate specificity and unravelling the importance of this enzyme family for cellular physiology and pathology.


Asunto(s)
Acilación/genética , Aciltransferasas/genética , Aciltransferasas/metabolismo , Humanos , Familia de Multigenes/genética , Especificidad por Sustrato
9.
J Lipid Res ; 55(4): 668-80, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24565757

RESUMEN

Breast cancer type 1 (BRCA1) susceptibility protein is expressed across multiple tissues including skeletal muscle. The overall objective of this investigation was to define a functional role for BRCA1 in skeletal muscle using a translational approach. For the first time in both mice and humans, we identified the presence of multiple isoforms of BRCA1 in skeletal muscle. In response to an acute bout of exercise, we found increases in the interaction between the native forms of BRCA1 and the phosphorylated form of acetyl-CoA carboxylase. Decreasing BRCA1 content using a shRNA approach in cultured primary human myotubes resulted in decreased oxygen consumption by the mitochondria and increased reactive oxygen species production. The decreased BRCA1 content also resulted in increased storage of intracellular lipid and reduced insulin signaling. These results indicate that BRCA1 plays a critical role in the regulation of metabolic function in skeletal muscle. Collectively, these data reveal BRCA1 as a novel target to consider in our understanding of metabolic function and risk for development of metabolic-based diseases.


Asunto(s)
Proteína BRCA1/fisiología , Músculo Esquelético/metabolismo , Acetil-CoA Carboxilasa/metabolismo , Adenilato Quinasa/metabolismo , Adulto , Animales , Células Cultivadas , Femenino , Expresión Génica , Regulación de la Expresión Génica , Humanos , Insulina/fisiología , Metabolismo de los Lípidos , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias Musculares/metabolismo , Músculo Esquelético/citología , Mioblastos Esqueléticos/metabolismo , Consumo de Oxígeno , Condicionamiento Físico Animal , Esfuerzo Físico , Procesamiento Proteico-Postraduccional , Especies Reactivas de Oxígeno/metabolismo , Adulto Joven
10.
Am J Physiol Endocrinol Metab ; 305(8): E1018-29, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-23982155

RESUMEN

LKB1 and its downstream targets of the AMP-activated protein kinase family are important regulators of many aspects of skeletal muscle cell function, including control of mitochondrial content and capillarity. LKB1 deficiency in skeletal and cardiac muscle (mLKB1-KO) greatly impairs exercise capacity. However, cardiac dysfunction in that genetic model prevents a clear assessment of the role of skeletal muscle LKB1 in the observed effects. Our purposes here were to determine whether skeletal muscle-specific knockout of LKB1 (skmLKB1-KO) decreases exercise capacity and mitochondrial protein content, impairs accretion of mitochondrial proteins after exercise training, and attenuates improvement in running performance after exercise training. We found that treadmill and voluntary wheel running capacity was reduced in skmLKB1-KO vs. control (CON) mice. Citrate synthase activity, succinate dehydrogenase activity, and pyruvate dehydrogenase kinase content were lower in KO vs. CON muscles. Three weeks of treadmill training resulted in significantly increased treadmill running performance in both CON and skmLKB1-KO mice. Citrate synthase activity increased significantly with training in both genotypes, but protein content and activity for components of the mitochondrial electron transport chain increased only in CON mice. Capillarity and VEGF protein was lower in skmLKB1-KO vs. CON muscles, but VEGF increased with training only in skmLKB1-KO. Three hours after an acute bout of muscle contractions, PGC-1α, cytochrome c, and VEGF gene expression all increased in CON but not skmLKB1-KO muscles. Our findings indicate that skeletal muscle LKB1 is required for accretion of some mitochondrial proteins but not for early exercise capacity improvements with exercise training.


Asunto(s)
Adaptación Fisiológica , Mitocondrias Musculares/metabolismo , Actividad Motora , Destreza Motora , Músculo Esquelético/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Quinasas Activadas por AMP , Animales , Capilares/fisiología , Citrato (si)-Sintasa/metabolismo , Ciclo del Ácido Cítrico , Femenino , Regulación Enzimológica de la Expresión Génica , Masculino , Ratones , Ratones Noqueados , Mitocondrias Musculares/enzimología , Músculo Esquelético/irrigación sanguínea , Músculo Esquelético/citología , Músculo Esquelético/enzimología , Proteínas Serina-Treonina Quinasas/genética , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora , ARN Mensajero/metabolismo , Succinato Deshidrogenasa/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
11.
Am J Physiol Regul Integr Comp Physiol ; 304(3): R206-17, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23193112

RESUMEN

Disruptions of ovarian function in women are associated with increased risk of metabolic disease due to dysregulation of peripheral glucose homeostasis in skeletal muscle. Our previous evidence suggests that alterations in skeletal muscle lipid metabolism coupled with altered mitochondrial function may also develop. The objective of this study was to use an integrative metabolic approach to identify potential areas of dysfunction that develop in skeletal muscle from ovariectomized (OVX) female mice compared with age-matched ovary-intact adult female mice (sham). The OVX mice exhibited significant increases in body weight, visceral, and inguinal fat mass compared with sham mice. OVX mice also had significant increases in skeletal muscle intramyocellular lipids (IMCL) compared with the sham animals, which corresponded to significant increases in the protein content of the fatty acid transporters CD36/FAT and FABPpm. A targeted metabolic profiling approach identified significantly lower levels of specific acyl carnitine species and various amino acids in skeletal muscle from OVX mice compared with the sham animals, suggesting a potential dysfunction in lipid and amino acid metabolism, respectively. Basal and maximal mitochondrial oxygen consumption rates were significantly impaired in skeletal muscle fibers from OVX mice compared with sham animals. Collectively, these data indicate that loss of ovarian function results in increased IMCL storage that is coupled with alterations in mitochondrial function and changes in the skeletal muscle metabolic profile.


Asunto(s)
Metabolismo Energético/fisiología , Metabolismo de los Lípidos/fisiología , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Ovariectomía , Animales , Femenino , Ratones , Ratones Endogámicos C57BL
12.
Commun Biol ; 6(1): 557, 2023 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-37225770

RESUMEN

Autism spectrum disorders are more common in males, and have a substantial genetic component. Chromosomal 16p11.2 deletions in particular carry strong genetic risk for autism, yet their neurobiological impact is poorly characterised, particularly at the integrated systems level. Here we show that mice reproducing this deletion (16p11.2 DEL mice) have reduced GABAergic interneuron gene expression (decreased parvalbumin mRNA in orbitofrontal cortex, and male-specific decreases in Gad67 mRNA in parietal and insular cortex and medial septum). Metabolic activity was increased in medial septum, and in its efferent targets: mammillary body and (males only) subiculum. Functional connectivity was altered between orbitofrontal, insular and auditory cortex, and between septum and hippocampus/subiculum. Consistent with this circuit dysfunction, 16p11.2 DEL mice showed reduced prepulse inhibition, but enhanced performance in the continuous performance test of attentional ability. Level 1 autistic individuals show similarly heightened performance in the equivalent human test, also associated with parietal, insular-orbitofrontal and septo-subicular dysfunction. The data implicate cortical and septal GABAergic dysfunction, and resulting connectivity changes, as the cause of pre-attentional and attentional changes in autism.


Asunto(s)
Corteza Auditiva , Trastorno del Espectro Autista , Humanos , Animales , Masculino , Ratones , Estructuras Cromosómicas , Deleción Cromosómica , Trastorno del Espectro Autista/genética , ARN Mensajero
13.
Biochem Biophys Res Commun ; 414(1): 215-9, 2011 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-21945940

RESUMEN

Vasodilator-stimulated phosphoprotein (VASP) is an actin regulatory protein that functions in adhesion and migration. In epithelial cells, VASP participates in cell-cell adhesion. At the molecular level, VASP drives actin bundling and polymerization. VASP activity is primarily regulated by phosphorylation. Three physiologically relevant phosphorylation sites significantly reduce actin regulatory activity and are targeted by several kinases, most notable Abl and protein kinases A and G (PKA and PKG). AMP-dependent kinase (AMPK) is best characterized as a cellular sensor of ATP depletion, but also alters actin dynamics in epithelial cells and participates in cell polarity pathways downstream of LKB1. While little is known about how AMPK direct changes in actin dynamics, AMPK has been shown to phosphorylate VASP at one of these three well-characterized PKA/PKG phosphorylation sites. Here we show that phosphorylation of VASP by AMPK occurs at a novel site, serine 322, and that phosphorylation at this site alters actin filament binding. We also show that inhibition of AMPK activity results in the accumulation of VASP at cell-cell adhesions and a concomitant increase in cell-cell adhesion.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Actinas/metabolismo , Moléculas de Adhesión Celular/metabolismo , Proteínas de Microfilamentos/metabolismo , Fosfoproteínas/metabolismo , Serina/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Adhesión Celular , Moléculas de Adhesión Celular/genética , Línea Celular , Perros , Ratones , Proteínas de Microfilamentos/genética , Datos de Secuencia Molecular , Fosfoproteínas/genética , Fosforilación , Serina/genética
14.
J Psychopharmacol ; 35(10): 1265-1276, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34304635

RESUMEN

BACKGROUND: Aside from regulating circadian rhythms, melatonin also affects cognitive processes, such as alertness, and modulates the brain circuitry underlying psychiatric diseases, such as depression, schizophrenia and bipolar disorder, via mechanisms that are not fully clear. In particular, while melatonin MT1 receptors are thought primarily to mediate the circadian effects of the hormone, the contribution of the MT2 receptor to melatonin actions remains enigmatic. AIMS: To characterise the contribution of MT2 receptors to melatonin's effects on cognition and anxiety/sociability. METHODS: Mice with a genetic deletion of the MT2 receptor, encoded by the Mtnr1b gene, were compared with wild-type littermates for performance in a translational touchscreen version of the continuous performance task (CPT) to assess attentional processes and then monitored over 3 days in an ethological home-cage surveillance system. RESULTS: Mtnr1b knockout (KO) mice were able to perform at relatively normal levels in the CPT. However, they showed consistent evidence of more liberal/risky responding strategies relative to control mice, with increases in hit rates and false alarm rates, which were maintained even when the cognitive demands of the task were increased. Assessment in the home-cage monitoring system revealed that female Mtnr1b KO mice have increased anxiety levels, whereas male Mtnr1b KO mice show increased sociability. CONCLUSIONS: The results confirm that the MT2 receptor plays a role in cognition and also modulates anxiety and social interactions. These data provide new insights into the functions of endogenous melatonin and will inform future drug development strategies focussed on the MT2 receptor.


Asunto(s)
Ansiedad/fisiopatología , Atención/fisiología , Melatonina/metabolismo , Receptor de Melatonina MT2/genética , Animales , Ansiedad/genética , Cognición/fisiología , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factores Sexuales , Interacción Social
15.
Genes Brain Behav ; 20(2): e12710, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33078498

RESUMEN

The GPR88 orphan G protein-coupled receptor is expressed throughout the striatum, being preferentially localised in medium spiny neurons. It is also present in lower densities in frontal cortex and thalamus. Rare mutations in humans suggest a role in cognition and motor function, while common variants are associated with psychosis. Here we evaluate the influence of genetic deletion of GPR88 upon performance in translational tasks interrogating motivation, reward evaluation and cognitive function. In an automated radial arm maze 'N-back' working memory task, Gpr88 KO mice showed impaired correct responding, suggesting a role for GPR88 receptors in working memory circuitry. Associative learning performance was similar to wild-type controls in a touchscreen task but performance was impaired at the reversal learning stage, suggesting cognitive inflexibility. Gpr88 KO mice showed higher breakpoints, reduced latencies and lengthened session time in a progressive ratio task consistent with enhanced motivation. Simultaneously, locomotor hyperactivity was apparent in this task, supporting previous findings of actions of GPR88 in a cortico-striatal-thalamic motor loop. Evidence for a role of GPR88 in reward processing was demonstrated in a touchscreen-based equivalent of the Iowa gambling task. Although both Gpr88 KO and wild-type mice showed a preference for an optimum contingency choice, Gpr88 KO mice selected more risky choices at the expense of more advantageous lower risk options. Together these novel data suggest that striatal GPR88 receptors influence activity in a range of procedures integrated by prefrontal, orbitofrontal and anterior cingulate cortico-striatal-thalamic loops leading to altered cognitive, motivational and reward evaluation processes.


Asunto(s)
Cognición , Memoria a Corto Plazo , Receptores Acoplados a Proteínas G/genética , Recompensa , Animales , Cuerpo Estriado/metabolismo , Cuerpo Estriado/fisiología , Eliminación de Gen , Masculino , Ratones , Ratones Endogámicos C57BL , Corteza Motora/metabolismo , Corteza Motora/fisiología , Asunción de Riesgos , Tálamo/metabolismo , Tálamo/fisiología
16.
Sci Rep ; 10(1): 12303, 2020 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-32704009

RESUMEN

There are no current treatments for autism, despite its high prevalence. Deletions of chromosome 16p11.2 dramatically increase risk for autism, suggesting that mice with an equivalent genetic rearrangement may offer a valuable model for the testing of novel classes of therapeutic drug. 16p11.2 deletion (16p11.2 DEL) mice and wild-type controls were assessed using an ethological approach, with 24 h monitoring of activity and social interaction of groups of mice in a home-cage environment. The ability of the excitation/inhibition modulator N-acetyl cysteine (NAC) and the 5-HT1B/1D/1F receptor agonist eletriptan to normalise the behavioural deficits observed was tested. 16p11.2 DEL mice exhibited largely normal behaviours, but, following the stress of an injection, showed hyperlocomotion, reduced sociability, and a strong anxiolytic phenotype. The hyperactivity and reduced sociability, but not the suppressed anxiety, were effectively attenuated by both NAC and eletriptan. The data suggest that 16p11.2 DEL mice show an autism-relevant phenotype that becomes overt after an acute stressor, emphasising the importance of gene-environmental interactions in phenotypic analysis. Further, they add to an emerging view that NAC, or 5-HT1B/1D/1F receptor agonist treatment, may be a promising strategy for further investigation as a future treatment.


Asunto(s)
Trastorno Autístico/tratamiento farmacológico , Trastorno Autístico/genética , Deleción Cromosómica , Cromosomas de los Mamíferos/genética , Interacción Gen-Ambiente , Acetilcisteína/farmacología , Acetilcisteína/uso terapéutico , Animales , Ansiedad/genética , Trastorno Autístico/fisiopatología , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones Endogámicos C57BL , Actividad Motora , Fenotipo , Conducta Social , Interacción Social
17.
Cell Rep ; 31(3): 107536, 2020 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-32320645

RESUMEN

Chromosome 16p11.2 duplications dramatically increase risk for schizophrenia, but the mechanisms remain largely unknown. Here, we show that mice with an equivalent genetic mutation (16p11.2 duplication mice) exhibit impaired hippocampal-orbitofrontal and hippocampal-amygdala functional connectivity. Expression of schizophrenia-relevant GABAergic cell markers (parvalbumin and calbindin) is selectively decreased in orbitofrontal cortex, while somatostatin expression is decreased in lateral amygdala. When 16p11.2 duplication mice are tested in cognitive tasks dependent on hippocampal-orbitofrontal connectivity, performance is impaired in an 8-arm maze "N-back" working memory task and in a touchscreen continuous performance task. Consistent with hippocampal-amygdala dysconnectivity, deficits in ethologically relevant social behaviors are also observed. Overall, the cellular/molecular, brain network, and behavioral alterations markedly mirror those observed in schizophrenia patients. Moreover, the data suggest that 16p11.2 duplications selectively impact hippocampal-amygdaloid-orbitofrontal circuitry, supporting emerging ideas that dysfunction in this network is a core element of schizophrenia and defining a neural circuit endophenotype for the disease.


Asunto(s)
Amígdala del Cerebelo/fisiopatología , Trastorno Autístico/genética , Trastornos de los Cromosomas/genética , Endofenotipos/metabolismo , Hipocampo/fisiopatología , Discapacidad Intelectual/genética , Corteza Prefrontal/fisiopatología , Esquizofrenia/genética , Animales , Deleción Cromosómica , Cromosomas Humanos Par 16/genética , Femenino , Humanos , Masculino , Ratones
18.
Schizophr Bull ; 46(1): 211-223, 2020 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-31219577

RESUMEN

c-Jun N-terminal kinase (JNK) signaling contributes to functional plasticity in the brain and cognition. Accumulating evidence implicates a role for MAP kinase kinase 7 (MAP2K7), a JNK activator encoded by the Map2k7 gene, and other JNK pathway components in schizophrenia (ScZ). Mice haploinsufficient for Map2k7 (Map2k7+/- mice) display ScZ-relevant cognitive deficits, although the mechanisms are unclear. Here we show that Map2k7+/- mice display translationally relevant alterations in brain function, including hippocampal and mesolimbic system hypermetabolism with a contrasting prefrontal cortex (PFC) hypometabolism, reminiscent of patients with ScZ. In addition Map2k7+/- mice show alterations in functional brain network connectivity paralleling those reported in early ScZ, including PFC and hippocampal hyperconnectivity and compromised mesolimbic system functional connectivity. We also show that although the cerebral metabolic response to ketamine is preserved, the response to dextroamphetamine (d-amphetamine) is significantly attenuated in Map2k7+/- mice, supporting monoamine neurotransmitter system dysfunction but not glutamate/NMDA receptor (NMDA-R) dysfunction as a consequence of Map2k7 haploinsufficiency. These effects are mirrored behaviorally with an attenuated impact of d-amphetamine on sensorimotor gating and locomotion, whereas similar deficits produced by ketamine are preserved, in Map2k7+/- mice. In addition, Map2k7+/- mice show a basal hyperactivity and sensorimotor gating deficit. Overall, these data suggest that Map2k7 modifies brain and monoamine neurotransmitter system function in a manner relevant to the positive and cognitive symptoms of ScZ.


Asunto(s)
Conducta Animal/fisiología , Encéfalo , Conectoma , Endofenotipos , Locomoción/fisiología , MAP Quinasa Quinasa 7 , Red Nerviosa , Esquizofrenia , Filtrado Sensorial/fisiología , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/fisiopatología , Dextroanfetamina/farmacología , Modelos Animales de Enfermedad , Inhibidores de Captación de Dopamina/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Femenino , Haploinsuficiencia , Ketamina/farmacología , Imagen por Resonancia Magnética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/efectos de los fármacos , Red Nerviosa/metabolismo , Red Nerviosa/fisiopatología , Esquizofrenia/genética , Esquizofrenia/metabolismo , Esquizofrenia/fisiopatología
19.
Nat Commun ; 11(1): 189, 2020 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-31929511

RESUMEN

A unique property of skeletal muscle is its ability to adapt its mass to changes in activity. Inactivity, as in disuse or aging, causes atrophy, the loss of muscle mass and strength, leading to physical incapacity and poor quality of life. Here, through a combination of transcriptomics and transgenesis, we identify sestrins, a family of stress-inducible metabolic regulators, as protective factors against muscle wasting. Sestrin expression decreases during inactivity and its genetic deficiency exacerbates muscle wasting; conversely, sestrin overexpression suffices to prevent atrophy. This protection occurs through mTORC1 inhibition, which upregulates autophagy, and AKT activation, which in turn inhibits FoxO-regulated ubiquitin-proteasome-mediated proteolysis. This study reveals sestrin as a central integrator of anabolic and degradative pathways preventing muscle wasting. Since sestrin also protected muscles against aging-induced atrophy, our findings have implications for sarcopenia.


Asunto(s)
Proteínas de Choque Térmico/metabolismo , Músculo Esquelético/patología , Atrofia Muscular/prevención & control , Proteínas Nucleares/metabolismo , Transducción de Señal , Envejecimiento , Animales , Autofagia , Modelos Animales de Enfermedad , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O3/genética , Proteína Forkhead Box O3/metabolismo , Expresión Génica , Proteínas de Choque Térmico/genética , Humanos , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Proteínas Nucleares/genética , Sarcopenia/genética , Sarcopenia/metabolismo , Sarcopenia/patología , Sarcopenia/prevención & control
20.
Biochim Biophys Acta Mol Basis Dis ; 1866(8): 165805, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32339642

RESUMEN

Ad libitum high-fat diet (HFD) induces obesity and skeletal muscle metabolic dysfunction. Liver kinase B1 (LKB1) regulates skeletal muscle metabolism by controlling the AMP-activated protein kinase family, but its importance in regulating muscle gene expression and glucose tolerance in obese mice has not been established. The purpose of this study was to determine how the lack of LKB1 in skeletal muscle (KO) affects gene expression and glucose tolerance in HFD-fed, obese mice. KO and littermate control wild-type (WT) mice were fed a standard diet or HFD for 14 weeks. RNA sequencing, and subsequent analysis were performed to assess mitochondrial content and respiration, inflammatory status, glucose and insulin tolerance, and muscle anabolic signaling. KO did not affect body weight gain on HFD, but heavily impacted mitochondria-, oxidative stress-, and inflammation-related gene expression. Accordingly, mitochondrial protein content and respiration were suppressed while inflammatory signaling and markers of oxidative stress were elevated in obese KO muscles. KO did not affect glucose or insulin tolerance. However, fasting serum insulin and skeletal muscle insulin signaling were higher in the KO mice. Furthermore, decreased muscle fiber size in skmLKB1-KO mice was associated with increased general protein ubiquitination and increased expression of several ubiquitin ligases, but not muscle ring finger 1 or atrogin-1. Taken together, these data suggest that the lack of LKB1 in skeletal muscle does not exacerbate obesity or insulin resistance in mice on a HFD, despite impaired mitochondrial content and function and elevated inflammatory signaling and oxidative stress.


Asunto(s)
Mitocondrias/genética , Proteínas Mitocondriales/genética , Músculo Esquelético/metabolismo , Obesidad/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Citrato (si)-Sintasa/genética , Citrato (si)-Sintasa/metabolismo , Dieta Alta en Grasa/efectos adversos , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Ontología de Genes , Glucosa/metabolismo , Inflamación , Insulina/metabolismo , Resistencia a la Insulina/genética , Masculino , Ratones , Ratones Transgénicos , Mitocondrias/metabolismo , Mitocondrias/patología , Proteínas Mitocondriales/metabolismo , Anotación de Secuencia Molecular , Músculo Esquelético/patología , Obesidad/etiología , Obesidad/metabolismo , Obesidad/patología , Estrés Oxidativo , Proteínas Serina-Treonina Quinasas/deficiencia , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA