Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Mamm Genome ; 33(1): 66-80, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34741192

RESUMEN

Model organism research is essential for discovering the mechanisms of human diseases by defining biologically meaningful gene to disease relationships. The Rat Genome Database (RGD, ( https://rgd.mcw.edu )) is a cross-species knowledgebase and the premier online resource for rat genetic and physiologic data. This rich resource is enhanced by the inclusion and integration of comparative data for human and mouse, as well as other human disease models including chinchilla, dog, bonobo, pig, 13-lined ground squirrel, green monkey, and naked mole-rat. Functional information has been added to records via the assignment of annotations based on sequence similarity to human, rat, and mouse genes. RGD has also imported well-supported cross-species data from external resources. To enable use of these data, RGD has developed a robust infrastructure of standardized ontologies, data formats, and disease- and species-centric portals, complemented with a suite of innovative tools for discovery and analysis. Using examples of single-gene and polygenic human diseases, we illustrate how data from multiple species can help to identify or confirm a gene as involved in a disease and to identify model organisms that can be studied to understand the pathophysiology of a gene or pathway. The ultimate aim of this report is to demonstrate the utility of RGD not only as the core resource for the rat research community but also as a source of bioinformatic tools to support a wider audience, empowering the search for appropriate models for human afflictions.


Asunto(s)
Investigación Biomédica , Bases de Datos Genéticas , Animales , Chlorocebus aethiops , Perros , Genoma/genética , Genómica , Ratones , Oligopéptidos , Porcinos
2.
J Chem Phys ; 151(16): 164306, 2019 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-31675859

RESUMEN

Nitroimidazoles are important compounds in medicine, biology, and the food industry. The growing need for their structural assignment, as well as the need for the development of the detection and screening methods, provides the motivation to understand their fundamental properties and reactivity. Here, we investigated the decomposition of protonated ronidazole [Roni+H]+ in low-energy and high-energy collision-induced dissociation (CID) experiments. Quantum chemical calculations showed that the main fragmentation channels involve intramolecular proton transfer from nitroimidazole to its side chain followed by a release of NH2CO2H, which can proceed via two pathways involving transfer of H+ from (1) the N3 position via a barrier of TS2 of 0.97 eV, followed by the rupture of the C-O bond with a thermodynamic threshold of 2.40 eV; and (2) the -CH3 group via a higher barrier of 2.77 eV, but with a slightly lower thermodynamic threshold of 2.24 eV. Electrospray ionization of ronidazole using deuterated solvents showed that in low-energy CID, only pathway (1) proceeds, and in high-energy CID, both channels proceed with contributions of 81% and 19%. While both of the pathways are associated with small kinetic energy release of 10-23 meV, further release of the NO• radical has a KER value of 339 meV.

3.
Dalton Trans ; 44(21): 9915-20, 2015 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-25939694

RESUMEN

Due to their high boron content and rich chemistry, dicarba-closo-dodecaboranes (carboranes) are promising building blocks for the development of drug candidates with application in Boron Neutron Capture Therapy. However, the non-invasive determination of their pharmacokinetic properties to predict therapeutic efficacy is still a challenge. Herein, we have reported the unprecedented preparation of mono-[(125)I] iodinated decaborane via a catalyst-assisted isotopic exchange. Subsequent reactions of the radiolabelled species with acetylenes in acetonitrile under microwave heating yield the corresponding (125)I-labelled, Cc-substituted o-carboranes with good overall radiochemical yields in short reaction times. The same synthetic strategy was successfully applied to the preparation of (131)I-labelled analogues, and further extension to other radioisotopes of iodine such as (124)I (positron emitter) or (123)I (gamma emitter) can be envisaged. Hence, the general strategy reported here is suitable for the preparation of a wide range of radiolabelled Cc-substituted o-carborane derivatives. The labelled compounds might be subsequently investigated in vivo by using nuclear imaging techniques such as Single Photon Emission Computerized Tomography or Positron Emission Tomography.


Asunto(s)
Boranos/química , Radioisótopos de Yodo/química , Radiofármacos/química , Acetonitrilos/química , Alquinos/química , Terapia por Captura de Neutrón de Boro , Halogenación , Líquidos Iónicos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA