Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Blood ; 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38905635

RESUMEN

The interaction between menin and histone-lysine N-methyltransferase 2A (KMT2A) is a critical dependency for KMT2A- or nucleophosmin 1 (NPM1)-altered leukemias and an emerging opportunity for therapeutic development. JNJ-75276617 is a novel, orally bioavailable, potent, and selective protein-protein interaction inhibitor of the binding between menin and KMT2A. In KMT2A-rearranged (KMT2A-r) and NPM1-mutant (NPM1c) AML cells, JNJ-75276617 inhibited the association of the menin-KMT2A complex with chromatin at target gene promoters, resulting in reduced expression of several menin-KMT2A target genes, including MEIS1 and FLT3. JNJ-75276617 displayed potent anti-proliferative activity across several AML and ALL cell lines and patient samples harboring KMT2A- or NPM1-alterations in vitro. In xenograft models of AML and ALL, JNJ-75276617 reduced leukemic burden and provided a significant dose-dependent survival benefit accompanied by expression changes of menin-KMT2A target genes. JNJ-75276617 demonstrated synergistic effects with gilteritinib in vitro in AML cells harboring KMT2A-r. JNJ-75276617 further exhibited synergistic effects with venetoclax and azacitidine in AML cells bearing KMT2A-r in vitro, and significantly increased survival in mice. Interestingly, JNJ-75276617 showed potent anti-proliferative activity in cell lines engineered with recently discovered mutations (MEN1M327I or MEN1T349M) that developed in patients refractory to the menin-KMT2A inhibitor revumenib. A co-crystal structure of menin in complex with JNJ-75276617 indicates a unique binding mode distinct from other menin-KMT2A inhibitors, including revumenib. JNJ-75276617 is being clinically investigated for acute leukemias harboring KMT2A or NPM1 alterations, as a monotherapy for relapsed/refractory (R/R) acute leukemia (NCT04811560), or in combination with AML-directed therapies (NCT05453903).

2.
J Org Chem ; 86(23): 17344-17361, 2021 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-34748342

RESUMEN

Cyclopropane fusion of the only rotatable carbon-carbon bond in furanosyl nucleosides (i.e., exocyclic 4'-5') is a powerful design strategy to arrive at conformationally constrained analogues. Herein, we report a direct stereodivergent route toward the synthesis of the four possible configurations of 4-spirocyclopropane furanoses, which have been transformed into the corresponding 4'-spirocyclic adenosine analogues. The latter showed differential inhibition of the protein methyltransferase PRMT5-MEP50 complex, with one analogue inhibiting more effectively than adenosine itself, demonstrating the utility of rationally probing 4'-5' side chain orientations.


Asunto(s)
Adenosina , Nucleósidos , Catálisis
3.
J Org Chem ; 85(23): 14989-15005, 2020 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-33196210

RESUMEN

A novel class of substituted spiro[3.4]octanes can be accessed via a [2 + 2]-cycloaddition of dichloroketene on a readily prepared exo-methylene cyclopentane building block. This reaction sequence was found to be robust on a multigram scale and afforded a central spirocyclobutanone scaffold for carbocyclic nucleosides. The reactivity of this constrained building block was evaluated and compared to the corresponding 4'-spirocyclic furanose analogues. Density functional theory calculations were performed to support the observed selectivity in the carbonyl reduction of spirocyclobutanone building blocks. Starting from novel spirocyclic intermediates, we exemplified the preparation of an undescribed class of carbocyclic nucleoside analogues and provided a proof of concept for application as inhibitors for the protein methyltransferase target PRMT5.


Asunto(s)
Ciclopentanos , Nucleósidos , Reacción de Cicloadición
4.
Chemistry ; 25(67): 15419-15423, 2019 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-31609050

RESUMEN

Despite the large variety of modified nucleosides that have been reported, the preparation of constrained 4'-spirocyclic adenosine analogues has received very little attention. We discovered that the [2+2]-cycloaddition of dichloroketene on readily available 4'-exo-methylene furanose sugars efficiently results in the diastereoselective formation of novel 4'-spirocyclobutanones. The reaction mechanism was investigated via density functional theory (DFT) and found to proceed either via a non-synchronous or stepwise reaction sequence, controlled by the stereochemistry at the 3'-position of the sugar substrate. The obtained dichlorocyclobutanones were converted into nucleoside analogues, providing access to a novel class of chiral 4'-spirocyclobutyl adenosine mimetics in eight steps from commercially available sugars. Assessment of the biological activity of designed 4'-spirocyclic adenosine analogues identified potent inhibitors for protein methyltransferase target PRMT5.


Asunto(s)
Adenosina/química , Nucleósidos/análogos & derivados , Nucleósidos/síntesis química , Carbohidratos/química , Reacción de Cicloadición , Teoría Funcional de la Densidad , Dicloroetilenos/química , Glicosilación , Metales/química , Estructura Molecular , Oxidación-Reducción , Estereoisomerismo , Termodinámica
5.
Bioorg Med Chem Lett ; 23(1): 310-7, 2013 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-23177258

RESUMEN

The design and synthesis of novel HIV-1 protease inhibitors (PIs) (1-22), which display high potency against HIV-1 wild-type and multi-PI-resistant HIV-mutant clinical isolates, is described. Lead optimization was initiated from compound 1, a Phe-Phe hydroxyethylene peptidomimetic PI, and was directed towards the discovery of new PIs suitable for a long-acting (LA) injectable drug application. Introducing a heterocyclic 6-methoxy-3-pyridinyl or a 6-(dimethylamino)-3-pyridinyl moiety (R(3)) at the para-position of the P1' benzyl fragment generated compounds with antiviral potency in the low single digit nanomolar range. Halogenation or alkylation of the metabolic hot spots on the various aromatic rings resulted in PIs with high stability against degradation in human liver microsomes and low plasma clearance in rats. Replacing the chromanolamine moiety (R(1)) in the P2 protease binding site by a cyclopentanolamine or a cyclohexanolamine derivative provided a series of high clearance PIs (16-22) with EC(50)s on wild-type HIV-1 in the range of 0.8-1.8 nM. PIs 18 and 22, formulated as nanosuspensions, showed gradual but sustained and complete release from the injection site over two months in rats, and were therefore identified as interesting candidates for a LA injectable drug application for treating HIV/AIDS.


Asunto(s)
Carbamatos/síntesis química , Dipéptidos/síntesis química , Diseño de Fármacos , Inhibidores de la Proteasa del VIH/síntesis química , Proteasa del VIH/química , VIH-1/enzimología , Piridinas/síntesis química , Alquilación , Animales , Carbamatos/química , Carbamatos/farmacocinética , Dipéptidos/química , Dipéptidos/farmacocinética , Proteasa del VIH/metabolismo , Inhibidores de la Proteasa del VIH/química , Inhibidores de la Proteasa del VIH/farmacocinética , Semivida , Halogenación , Humanos , Microsomas Hepáticos/metabolismo , Piridinas/química , Piridinas/farmacocinética , Ratas , Relación Estructura-Actividad
6.
J Pharmacol Exp Ther ; 336(2): 560-74, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21084390

RESUMEN

The α(7) nicotinic acetylcholine receptor (nAChR) is a potential therapeutic target for the treatment of cognitive deficits associated with schizophrenia, Alzheimer's disease, Parkinson's disease, and attention-deficit/hyperactivity disorder. Activation of α(7) nAChRs improved sensory gating and cognitive function in animal models and in early clinical trials. Here we describe the novel highly selective α(7) nAChR positive allosteric modulator, 2-[[4-fluoro-3-(trifluoromethyl)phenyl]amino]-4-(4-pyridinyl)-5-thiazolemethanol (JNJ-1930942). This compound enhances the choline-evoked rise in intracellular Ca(2+) levels in the GH4C1 cell line expressing the cloned human α(7) nAChR. JNJ-1930942 does not act on α4ß2, α3ß4 nAChRs or on the related 5-HT3A channel. Electrophysiological assessment in the GH4C1 cell line shows that JNJ-1930942 increases the peak and net charge response to choline, acetylcholine, and N-[(3R)-1-azabicyclo[2.2.2]oct-3-yl]-4-chlorobenzamide (PNU-282987). The potentiation is obtained mainly by affecting the receptor desensitization characteristics, leaving activation and deactivation kinetics as well as recovery from desensitization relatively unchanged. Choline efficacy is increased over its full concentration response range, and choline potency is increased more than 10-fold. The potentiating effect is α(7) channel-dependent, because it is blocked by the α(7) antagonist methyllycaconitine. Moreover, in hippocampal slices, JNJ-1930942 enhances neurotransmission at hippocampal dentate gyrus synapses and facilitates the induction of long-term potentiation of electrically evoked synaptic responses in the dentate gyrus. In vivo, JNJ-1930942 reverses a genetically based auditory gating deficit in DBA/2 mice. JNJ-1930942 will be a useful tool to study the therapeutic potential of α(7) nAChR potentiation in central nervous system disorders in which a deficit in α(7) nAChR neurotransmission is hypothesized to be involved.


Asunto(s)
Piridinas/farmacología , Receptores Nicotínicos/efectos de los fármacos , Tiazoles/farmacología , Regulación Alostérica , Animales , Benzamidas/farmacología , Compuestos Bicíclicos con Puentes/farmacología , Calcio/metabolismo , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Potenciales Evocados Auditivos/efectos de los fármacos , Hipocampo/efectos de los fármacos , Hipocampo/fisiología , Humanos , Potenciación a Largo Plazo/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos DBA , Agonistas Nicotínicos/farmacología , Ratas , Ratas Sprague-Dawley , Receptores Nicotínicos/fisiología , Transmisión Sináptica/efectos de los fármacos , Receptor Nicotínico de Acetilcolina alfa 7
7.
J Org Chem ; 76(10): 4105-11, 2011 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-21500813

RESUMEN

Fluorinated pyrazoles bearing additional functional groups that allow further functionalization are of considerable interest as building blocks in medicinal chemistry. The developed synthetic strategy for new 3-amino-4-fluoropyrazoles consists of a monofluorination of ß-methylthio-ß-enaminoketones using 1-(chloromethyl)-4-fluoro-1,4-diazoniabicyclo[2.2.2]octane bis(tetrafluoroborate) (Selectfluor) toward the corresponding monofluorinated enaminoketones, followed by condensation with different hydrazines.


Asunto(s)
Pirazoles/química , Pirazoles/síntesis química , Halogenación
8.
Org Lett ; 23(22): 8828-8833, 2021 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-34730365

RESUMEN

Novel C-4',C-5' cyclobutane-fused spirocyclic ribonucleoside analogues were prepared. Thermal [2 + 2] cycloaddition between dichloroketene and readily derived 4'-exo-methylene furanoses afforded a first entry to the required constrained ribofuranoses, relying on a carbonyl transposition sequence. Alternatively, an unusual stereoselective ionic [2 + 2] cycloaddition using methyl propiolate promoted by methylaluminoxane gave a complementary, more direct approach to such ribofuranoses. Further conversion to the constrained adenosine analogues revealed promising structure-dependent inhibition of the protein methyltransferase PRMT5:MEP50 complex in the (sub)micromolar range.


Asunto(s)
Adenosina
9.
Mol Cancer Ther ; 20(12): 2317-2328, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34583982

RESUMEN

The protein arginine methyltransferase 5 (PRMT5) methylates a variety of proteins involved in splicing, multiple signal transduction pathways, epigenetic control of gene expression, and mechanisms leading to protein expression required for cellular proliferation. Dysregulation of PRMT5 is associated with clinical features of several cancers, including lymphomas, lung cancer, and breast cancer. Here, we describe the characterization of JNJ-64619178, a novel, selective, and potent PRMT5 inhibitor, currently in clinical trials for patients with advanced solid tumors, non-Hodgkin's lymphoma, and lower-risk myelodysplastic syndrome. JNJ-64619178 demonstrated a prolonged inhibition of PRMT5 and potent antiproliferative activity in subsets of cancer cell lines derived from various histologies, including lung, breast, pancreatic, and hematological malignancies. In primary acute myelogenous leukemia samples, the presence of splicing factor mutations correlated with a higher ex vivo sensitivity to JNJ-64619178. Furthermore, the potent and unique mechanism of inhibition of JNJ-64619178, combined with highly optimized pharmacological properties, led to efficient tumor growth inhibition and regression in several xenograft models in vivo, with once-daily or intermittent oral-dosing schedules. An increase in splicing burden was observed upon JNJ-64619178 treatment. Overall, these observations support the continued clinical evaluation of JNJ-64619178 in patients with aberrant PRMT5 activity-driven tumors.


Asunto(s)
Inhibidores Enzimáticos/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Proteína-Arginina N-Metiltransferasas/efectos de los fármacos , Pirimidinas/uso terapéutico , Pirroles/uso terapéutico , Animales , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/farmacología , Humanos , Neoplasias Pulmonares/patología , Ratones , Pirimidinas/farmacología , Pirroles/farmacología
10.
J Org Chem ; 75(3): 929-32, 2010 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-20050617

RESUMEN

Synthetic strategies toward 4-substituted 3,3-difluoropiperidines were evaluated. 4-Alkoxymethyl- and 4-aryloxymethyl-3,3-difluoropiperidines were synthesized via 1,4-addition of ethyl bromodifluoroacetate to 3-substituted acrylonitriles in the presence of copper powder, followed by borane reduction of the cyano substituent, lactamization, and reduction of the lactam. This method was applied to establish the synthesis of N-protected 3,3-difluoroisonipecotic acid, a fluorinated gamma-amino acid. 4-Benzyloxy-3,3-difluoropiperidine was prepared using an analogous methodology and was converted to N-protected 3,3-difluoro-4,4-dihydroxypiperidine, a compound with high potential as a building block in medicinal chemistry.


Asunto(s)
Hidrocarburos Fluorados/síntesis química , Piperidinas/síntesis química , Aminoácidos/química , Cobre/química , Hidrocarburos Fluorados/química , Espectroscopía de Resonancia Magnética , Estructura Molecular , Piperidinas/química , Estereoisomerismo
11.
Org Biomol Chem ; 8(20): 4514-7, 2010 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-20668779

RESUMEN

Synthetic routes toward new 5-amino- and 5-hydroxy-3,3-difluoropiperidines, which are of high interest as building blocks in medicinal chemistry, are described. The key step involves the N-halosuccinimide-induced cyclization of 2,2-difluoro-4-pentenylamines toward 5-halo-3,3-difluoropiperidines, which were used to synthesize 5-amino-3,3-difluoropiperidine. In a second strategy, iodolactonization of 2,2-difluoro-4-pentenoic acid gave the corresponding γ-lactone, which was transformed into 5-hydroxy-3,3-difluoropiperidine.


Asunto(s)
Hidrocarburos Fluorados/síntesis química , Piperidinas/síntesis química , Ciclización , Hidrocarburos Fluorados/química , Lactonas/química , Ácidos Pentanoicos/química , Estereoisomerismo
12.
Org Biomol Chem ; 8(11): 2509-12, 2010 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-20407687

RESUMEN

A short and efficient synthesis of 4-aminomethyl-4-fluoropiperidines and 3-aminomethyl-3-fluoropyrrolidines is described. These fluorinated azaheterocycles are of specific interest as bifunctional building blocks for fluorinated pharmaceutical compounds. The key step of the synthetic pathway involves the regioselective bromofluorination of N-Boc-4-methylenepiperidine and 3-methylenepyrrolidine using Et(3)N.3HF and NBS.


Asunto(s)
Flúor/química , Piperidinas/síntesis química , Pirrolidinas/síntesis química , Química Farmacéutica , Estructura Molecular , Piperidinas/química , Pirrolidinas/química , Estereoisomerismo
13.
ACS Med Chem Lett ; 11(11): 2227-2231, 2020 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-33214833

RESUMEN

Protein arginine methyltransferase 5 (PRMT5) is an enzyme that can symmetrically dimethylate arginine residues in histones and nonhistone proteins by using S-adenosyl methionine (SAM) as the methyl donating cofactor. We have designed a library of SAM analogues and discovered potent, cell-active, and selective spiro diamines as inhibitors of the enzymatic function of PRMT5. Crystallographic studies confirmed a very interesting binding mode, involving protein flexibility, where both the cofactor pocket and part of substrate binding site are occupied by these inhibitors.

14.
J Org Chem ; 74(3): 1377-80, 2009 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-19115927

RESUMEN

5-Alkoxymethyl-2-aryl-3-fluoro-1H-pyrroles and 2-aryl-3-fluoro-1H-pyrrole-5-carbaldehydes were efficiently prepared from the corresponding 2-aryl-5-(bromomethyl)-1-pyrrolines via electrophilic alpha,alpha-difluorination of the imino bond, using Selectfluor (1-chloromethyl-4-fluoro-1,4-diazoniabicyclo[2.2.2]octane bistetrafluoroborate) and subsequent aromatization by dehydrofluorination. This methodology provides a new and easy entry toward various new 3-fluorinated pyrroles.


Asunto(s)
Hidrocarburos Fluorados/síntesis química , Pirroles/síntesis química , Aldehídos/síntesis química , Hidrocarburos Bromados/química
15.
J Org Chem ; 74(5): 2250-3, 2009 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-19216497

RESUMEN

Synthetic strategies toward 3-fluoroazetidine-3-carboxylic acid, a new cyclic fluorinated beta-amino acid with high potential as building block in medicinal chemistry, were evaluated. The successful pathway includes the bromofluorination of N-(diphenylmethylidene)-2-(4-methoxyphenoxymethyl)-2-propenylamine, yielding 1-diphenylmethyl-3-hydroxymethyl-3-fluoroazetidine after reduction of the imino bond, ring closure, and removal of the 4-methoxybenzyl group. Changing the N-protecting group to a Boc-group allows further oxidation to 1-Boc-3-fluoroazetidine-3-carboxylic acid, a new fluorinated heterocyclic amino acid.


Asunto(s)
Aminoácidos/síntesis química , Azetinas/síntesis química , Ácidos Carboxílicos/síntesis química , Compuestos Heterocíclicos/síntesis química , Aminoácidos/química , Azetinas/química , Ácidos Carboxílicos/química , Compuestos Heterocíclicos/química , Estructura Molecular , Estereoisomerismo
16.
J Org Chem ; 73(14): 5458-61, 2008 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-18547110

RESUMEN

Difluoropiperidines attract considerable interest from organic and medicinal chemists, but their synthesis is often problematic. This paper describes a new synthetic pathway toward valuable 3,3-difluoropiperidines starting from suitable delta-chloro-alpha,alpha-difluoroimines. The latter imines can be synthesized via electrophilic fluorination of the corresponding delta-chloroimines using NFSI (N-fluorodibenzenesulfonimide) in acetonitrile. After hydride reduction of the imino bond and subsequent intramolecular substitution of the chloride atom, new 3,3-difluoropiperidines were obtained in good yields. In addition, this methodology was applied to establish the first synthesis of N-protected 3,3-difluoropipecolic acid, a new fluorinated amino acid.


Asunto(s)
Compuestos de Flúor/síntesis química , Piperidinas/síntesis química , Compuestos de Flúor/química , Estructura Molecular , Piperidinas/química
18.
J Org Chem ; 61(20): 6931-6935, 1996 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-11667588

RESUMEN

Racemic 5-hydroxy-4-oxa-endo-tricyclo[5.2.1.0(2,6)]dec-8-en-3-one and its 2-methyl analogue were resolved employing a lipase-catalyzed acetylation reaction. The latter compound thus gave access to a homochiral D-ring synthon for strigolactones. The enzymatic acetylation reaction occurred with a remarkable inversion of configuration at C-5, through which it is possible to achieve a highly efficient asymmetric synthesis of 5-acetoxy-2(5H)-furanone.

19.
Biochemistry ; 41(6): 2002-13, 2002 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-11827547

RESUMEN

Bovine thrombin and human factor Xa were acylated at their active site selectively with inhibitors derived from the parent compound 4-guanidinophenyl (E)-4-diethylamino-2-hydroxy-alpha-methylcinnamate hydrochloride, 1b. Peptidyl side chains were attached to the phenol ring via amide connection, which served as a recognition motif in inhibiting different serine proteases. Upon irradiation with 366 nm light, the trans-cinnamate attached to the active-site serine isomerizes to the cis isomer which then rapidly lactonizes to release the free enzyme. The peptidyl side chain sequences specific for each serine protease were revealed via constructing and screening a library of homologous compounds. This methodology may be applied to other proteases. One application based on enzyme-specific, photoactivatable inhibitors is to isolate a designated active protease from a mixture of several proteases. Thus, a cinnamate inhibitor with a biotin moiety, 1d, was synthesized. A solution of enzyme-specific, biotinylated inhibitor was added into a mixture of proteases containing a target enzyme. The target enzyme was acylated at the active site and subsequently bore a biotin tail. An avidin column was used to separate the biotinylated enzyme from the unmodified ones, by a strong binding between biotin and avidin. After a brief irradiation on the avidin column, the retained enzymes were released from the biotin tag and eluted off the column. To demonstrate the idea, thrombin and factor Xa have been separated from each other by this strategy.


Asunto(s)
Factor Xa/química , Serina Endopeptidasas/química , Trombina/química , Acilación , Animales , Avidina , Biotina , Dominio Catalítico , Bovinos , Cinamatos/síntesis química , Cinamatos/química , Cinamatos/farmacología , Inhibidores del Factor Xa , Humanos , Técnicas In Vitro , Cinética , Estructura Molecular , Fotoquímica , Inhibidores de Serina Proteinasa/síntesis química , Inhibidores de Serina Proteinasa/química , Inhibidores de Serina Proteinasa/farmacología , Trombina/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA