Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Virol ; : e0063924, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39132992

RESUMEN

There are four genogroups and 18 genotypes of human sapoviruses (HuSaVs) responsible for acute gastroenteritis. To comprehend their antigenic and virological differences, it is crucial to obtain viral stocks of the different strains. Previously, we utilized the human duodenum-derived cell line HuTu80, and glycocholate, a conjugated bile acid, to replicate and propagate GI.1, GI.2, and GII.3 HuSaVs (H. Takagi et al., Proc Natl Acad Sci U S A 117:32078-32085, 2020, https://10.1073/pnas.2007310117). First, we investigated the impact of HuTu80 passage number on HuSaV propagation. Second, we demonstrated that taurocholate improved the initial replication success rate and viral RNA levels in fecal specimens relative to glycocholate. By propagating 15 HuSaV genotypes (GI.1-7, GII.1-5, -8, and GV.1-2) and accomplishing preparation of viral stocks containing 1.0 × 109 to 3.4 × 1011 viral genomic copies/mL, we found that all strains required bile acids for replication, with GII.4 showing strict requirements for taurocholate. The deduced VP1 sequences of the viruses during the scale-up of serial passaged virus cultures were either identical or differed by only two amino acids from the original sequences in feces. In addition, we purified virions from nine strains of different genotypes and used them as immunogens for antiserum production. Enzyme-linked immunosorbent assays (ELISAs) using rabbit and guinea pig antisera for each of the 15 strains of different genotypes revealed distinct antigenicity among the propagating viruses across genogroups and differences between genotypes. Acquisition of biobanked viral resources and determination of key culture conditions will be valuable to gain insights into the common mechanisms of HuSaV infection. IMPORTANCE: The control of human sapovirus, which causes acute gastroenteritis in individuals of all ages, is challenging because of its association with outbreaks similar to those caused by human norovirus. The establishment of conditions for efficient viral propagation of various viral strains is essential for understanding the infection mechanism and identifying potential control methods. In this study, two critical factors for human sapovirus propagation in a conventional human duodenal cell line were identified, and 15 strains of different genotypes that differed at the genetic and antigenic levels were isolated and used to prepare virus stocks. The preparation of virus stocks has not been successful for noroviruses, which belong to the same family as sapoviruses. Securing virus stocks of multiple human sapovirus strains represents a significant advance toward establishing a reliable experimental system that does not depend on limited virus-positive fecal material.

2.
Pharmacol Res ; 203: 107155, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38527697

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) encompasses hepatic steatosis, non-alcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and hepatocellular carcinoma. It is the primary cause of chronic liver disorders, with a high prevalence but no approved treatment. Therefore, it is indispensable to find a trustworthy therapy for NAFLD. Recently, mounting evidence illustrates that Sirtuin 1 (SIRT1) is strongly associated with NAFLD. SIRT1 activation or overexpression attenuate NAFLD, while SIRT1 deficiency aggravates NAFLD. Besides, an array of therapeutic agents, including natural compounds, synthetic compounds, traditional Chinese medicine formula, and stem cell transplantation, alleviates NALFD via SIRT1 activation or upregulation. Mechanically, SIRT1 alleviates NAFLD by reestablishing autophagy, enhancing mitochondrial function, suppressing oxidative stress, and coordinating lipid metabolism, as well as reducing hepatocyte apoptosis and inflammation. In this review, we introduced the structure and function of SIRT1 briefly, and summarized the effect of SIRT1 on NAFLD and its mechanism, along with the application of SIRT1 agonists in treating NAFLD.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Sirtuina 1 , Sirtuina 1/metabolismo , Humanos , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Animales , Transducción de Señal/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Autofagia/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Hígado/efectos de los fármacos
3.
Hepatol Res ; 54(8): 1-30, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38874115

RESUMEN

Acute hepatitis E was considered rare until reports emerged affirming the existence of hepatitis E virus (HEV) genotypes 3 and 4 infections in Japan in the early 2000s. Extensive studies by Japanese researchers have highlighted the pivotal role of pigs and wild animals, such as wild boars and deer, as reservoirs for HEV, linking them to zoonotic infections in Japan. Currently, when hepatitis occurs subsequent to the consumption of undercooked or grilled pork, wild boar meat, or offal (including pig liver and intestines), HEV infection should be considered. Following the approval of anti-HEV immunoglobulin A antibody as a diagnostic tool for hepatitis E by Japan's Health Insurance System in 2011, the annual number of diagnosed cases of HEV infection has surged. Notably, the occurrence of post-transfusion hepatitis E promoted nationwide screening of blood products for HEV using nucleic acid amplification tests since 2020. Furthermore, chronic hepatitis E has been observed in immunosuppressed individuals. Considering the significance of hepatitis E, heightened preventive measures are essential. The Japan Agency for Medical Research and Development Hepatitis A and E viruses (HAV and HEV) Study Group, which includes special virologists and hepatologists, held a virtual meeting on February 17, 2024. Discussions encompassed pathogenesis, transmission routes, diagnosis, complications, severity factors, and ongoing and prospective vaccination or treatments for hepatitis E. Rigorous assessment of referenced studies culminated in the formulation of recommendations, which are detailed within this review. This comprehensive review presents recent advancements in HEV research and Japanese clinical practice guidelines for HEV infection.

4.
Bioorg Chem ; 148: 107463, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38776649

RESUMEN

Thrombosis leads to elevated mortality rates and substantial medical expenses worldwide. Human factor IXa (HFIXa) protease is pivotal in tissue factor (TF)-mediated thrombin generation, and represents a promising target for anticoagulant therapy. We herein isolated novel DNA aptamers that specifically bind to HFIXa through systematic evolution of ligands by exponential enrichment (SELEX) method. We identified two distinct aptamers, seq 5 and seq 11, which demonstrated high binding affinity to HFIXa (Kd = 74.07 ± 2.53 nM, and 4.93 ± 0.15 nM, respectively). Computer software was used for conformational simulation and kinetic analysis of DNA aptamers and HFIXa binding. These aptamers dose-dependently prolonged activated partial thromboplastin time (aPTT) in plasma. We further rationally optimized the aptamers by truncation and site-directed mutation, and generated the truncated forms (Seq 5-1t, Seq 11-1t) and truncated-mutated forms (Seq 5-2tm, Seq 11-2tm). They also showed good anticoagulant effects. The rationally and structurally designed antidotes (seq 5-2b and seq 11-2b) were competitively bound to the DNA aptamers and effectively reversed the anticoagulant effect. This strategy provides DNA aptamer drug-antidote pair with effective anticoagulation and rapid reversal, developing advanced therapies by safe, regulatable aptamer drug-antidote pair.


Asunto(s)
Antídotos , Aptámeros de Nucleótidos , Factor IXa , Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/farmacología , Humanos , Factor IXa/antagonistas & inhibidores , Factor IXa/metabolismo , Antídotos/farmacología , Antídotos/química , Antídotos/síntesis química , Relación Dosis-Respuesta a Droga , Anticoagulantes/farmacología , Anticoagulantes/química , Relación Estructura-Actividad , Estructura Molecular , Técnica SELEX de Producción de Aptámeros
5.
Acta Pharmacol Sin ; 45(8): 1556-1570, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38632318

RESUMEN

Frizzled receptors (FZDs) are key contributors intrinsic to the Wnt signaling pathway, activation of FZDs triggering the Wnt signaling cascade is frequently observed in human tumors and intimately associated with an aggressive carcinoma phenotype. It has been shown that the abnormal expression of FZD receptors contributes to the manifestation of malignant characteristics in human tumors such as enhanced cell proliferation, metastasis, chemotherapy resistance as well as the acquisition of cancer stemness. Given the essential roles of FZD receptors in the Wnt signaling in human tumors, this review aims to consolidate the prevailing knowledge on the specific status of FZD receptors (FZD1-10) and elucidate their respective functions in tumor progression. Furthermore, we delineate the structural basis for binding of FZD and its co-receptors to Wnt, and provide a better theoretical foundation for subsequent studies on related mechanisms. Finally, we describe the existing biological classes of small molecule-based FZD inhibitors in detail in the hope that they can provide useful assistance for design and development of novel drug candidates targeted FZDs.


Asunto(s)
Antineoplásicos , Receptores Frizzled , Neoplasias , Vía de Señalización Wnt , Humanos , Receptores Frizzled/metabolismo , Receptores Frizzled/antagonistas & inhibidores , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , Vía de Señalización Wnt/efectos de los fármacos , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Animales , Terapia Molecular Dirigida/métodos
6.
Appl Opt ; 63(12): 3334-3342, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38856485

RESUMEN

A channelized multi-frequency measurement system based on asymmetric double sideband detection is proposed. In this scheme, the sub-modulators of the dual-parallel Mach-Zehnder modulator are utilized for optical frequency comb (OFC) generation and under-test signal modulation. Subsequently, a sawtooth wave voltage is applied to the main modulator to introduce frequency shift to the modulated signals, breaking the symmetry between the RF signals and the OFC. The coupled signal is then divided into upper and lower sidebands for frequency down-conversion. By calibrating the measurement results of the two sidebands with each other, the frequency of the signal can be accurately measured. Simulation is preformed to realize multi-frequency measurement of microwave signals with measurement error less than 2 MHz in the range of 2.2-20 GHz. It is also found that the proposal can solve the problem of frequency ambiguity.

7.
Int J Mol Sci ; 25(7)2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38612477

RESUMEN

Cell division cycle 23 (CDC23) is a component of the tetratricopeptide repeat (TPR) subunit in the anaphase-promoting complex or cyclosome (APC/C) complex, which participates in the regulation of mitosis in eukaryotes. However, the regulatory model and mechanism by which the CDC23 gene regulates muscle production in pigs are largely unknown. In this study, we investigated the expression of CDC23 in pigs, and the results indicated that CDC23 is widely expressed in various tissues and organs. In vitro cell experiments have demonstrated that CDC23 promotes the proliferation of myoblasts, as well as significantly positively regulating the differentiation of skeletal muscle satellite cells. In addition, Gene Set Enrichment Analysis (GSEA) revealed a significant downregulation of the cell cycle pathway during the differentiation process of skeletal muscle satellite cells. The protein-protein interaction (PPI) network showed a high degree of interaction between genes related to the cell cycle pathway and CDC23. Subsequently, in differentiated myocytes induced after overexpression of CDC23, the level of CDC23 exhibited a significant negative correlation with the expression of key factors in the cell cycle pathway, suggesting that CDC23 may be involved in the inhibition of the cell cycle signaling pathway in order to promote the differentiation process. In summary, we preliminarily determined the function of CDC23 with the aim of providing new insights into molecular regulation during porcine skeletal muscle development.


Asunto(s)
Músculo Esquelético , Células Satélite del Músculo Esquelético , Animales , Ciclosoma-Complejo Promotor de la Anafase , Células Musculares , Porcinos
8.
Molecules ; 29(13)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38999088

RESUMEN

Dihydromyricetin (DMY) has been encapsulated in delivery systems to address the solubility limitations of DMY in water and improve its bioavailability. Air-assisted electrospinning has been used as a novel technology to load DMY. To evaluate the impact of adding DMY to dextran/zein nanofibers and understand the effects of the Maillard reaction (MR) on the physical and functional properties of DMY-loaded nanofibers, dextran/zein/xylose nanofibers with 0%, 1%, 2%, 3%, and 4% DMY were fabricated, followed by MR crosslinking. Scanning electron microscopy (SEM) observations indicated that the addition of DMY and the MR did not affect the morphology of the nanofibers. X-ray diffraction (XRD) results indicated amorphous dispersion of DMY within the nanofibers and a decreased crystalline structure within the nanofibers following the MR, which might improve their molecular flexibility. The nanofibrous film formed after the MR exhibited both increased tensile strength and elastic modulus due to hydrogen bonding within the nanofibers and increased elongation at break attributed to the increased amorphization of the structure after crosslinking. The nanofibers were also found to exhibit improved heat stability after the MR. The antioxidant activity of the nanofibers indicated a dose-dependent effect of DMY on radical scavenging activity and reducing power. The maintenance of antioxidant activity of the nanofibers after the MR suggested heat stability of DMY during heat treatment. Overall, dextran/zein nanofibers with various DMY contents exhibited tunable physical properties and effective antioxidant activities, indicating that dextran/zein nanofibers offer a successful DMY delivery system, which can be further applied as an active package.

9.
Fa Yi Xue Za Zhi ; 40(1): 37-42, 2024 Feb 25.
Artículo en Inglés, Zh | MEDLINE | ID: mdl-38500459

RESUMEN

OBJECTIVES: To investigate the toxicokinetic differences of 3,4-methylenedioxy-N-methylamphetamine (MDMA) and its metabolite 4,5-methylene dioxy amphetamine (MDA) in rats after single and continuous administration of MDMA, providing reference data for the forensic identification of MDMA. METHODS: A total of 24 rats in the single administration group were randomly divided into 5, 10 and 20 mg/kg experimental groups and the control group, with 6 rats in each group. The experimental group was given intraperitoneal injection of MDMA, and the control group was given intraperitoneal injection of the same volume of normal saline as the experimental group. The amount of 0.5 mL blood was collected from the medial canthus 5 min, 30 min, 1 h, 1.5 h, 2 h, 4 h, 6 h, 8 h, 10 h, 12 h after administration. In the continuous administration group, 24 rats were randomly divided into the experimental group (18 rats) and the control group (6 rats). The experimental group was given MDMA 7 d by continuous intraperitoneal injection in increments of 5, 7, 9, 11, 13, 15, 17 mg/kg per day, respectively, while the control group was given the same volume of normal saline as the experimental group by intraperitoneal injection. On the eighth day, the experimental rats were randomly divided into 5, 10 and 20 mg/kg dose groups, with 6 rats in each group. MDMA was injected intraperitoneally, and the control group was injected intraperitoneally with the same volume of normal saline as the experimental group. On the eighth day, 0.5 mL of blood was taken from the medial canthus 5 min, 30 min, 1 h, 1.5 h, 2 h, 4 h, 6 h, 8 h, 10 h, 12 h after administration. Liquid chromatography-triple quadrupole tandem mass spectrometry was used to detect MDMA and MDA levels, and statistical software was employed for data analysis. RESULTS: In the single-administration group, peak concentrations of MDMA and MDA were reached at 5 min and 1 h after administration, respectively, with the largest detection time limit of 12 h. In the continuous administration group, peak concentrations were reached at 30 min and 1.5 h after administration, respectively, with the largest detection time limit of 10 h. Nonlinear fitting equations for the concentration ratio of MDMA and MDA in plasma and administration time in the single-administration group and continuous administration group were as follows: T=10.362C-1.183, R2=0.974 6; T=7.397 3C-0.694, R2=0.961 5 (T: injection time; C: concentration ratio of MDMA to MDA in plasma). CONCLUSIONS: The toxicokinetic data of MDMA and its metabolite MDA in rats, obtained through single and continuous administration, including peak concentration, peak time, detection time limit, and the relationship between concentration ratio and administration time, provide a theoretical and data foundation for relevant forensic identification.


Asunto(s)
3,4-Metilenodioxianfetamina , Anfetaminas , N-Metil-3,4-metilenodioxianfetamina , Ratas , Animales , Anfetamina , N-Metil-3,4-metilenodioxianfetamina/toxicidad , 3,4-Metilenodioxianfetamina/análisis , Toxicocinética , Solución Salina
10.
Angew Chem Int Ed Engl ; 63(18): e202402018, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38390636

RESUMEN

Developing ruthenium-based heterogeneous catalysts with an efficient and stable interface is essential for enhanced acidic oxygen evolution reaction (OER). Herein, we report a defect-rich ultrathin boron nitride nanosheet support with relatively independent electron donor and acceptor sites, which serves as an electron reservoir and receiving station for RuO2, realizing the rapid supply and reception of electrons. Through precisely controlling the reaction interface, a low OER overpotential of only 180 mV (at 10 mA cm-2) and long-term operational stability (350 h) are achieved, suggesting potential practical applications. In situ characterization and theoretical calculations have validated the existence of a localized electronic recycling between RuO2 and ultrathin BN nanosheets (BNNS). The electron-rich Ru sites accelerate the adsorption of water molecules and the dissociation of intermediates, while the interconnection between the O-terminal and B-terminal edge establishes electronic back-donation, effectively suppressing the over-oxidation of lattice oxygen. This study provides a new perspective for constructing a stable and highly active catalytic interface.

12.
Trends Mol Med ; 30(6): 527-529, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38521716

RESUMEN

MORF4 (mortality factor on chromosome 4)-related gene 15 (MRG15) is a chromodomain protein that exists in various multiprotein complexes involved in transcription, DNA repair, and development. Here we summarize the recent advances involving MRG15 in modulating liver metabolism, both through its chromatin-binding capability and independently of it, highlighting MRG15 as a potential therapeutic target for liver metabolic diseases.


Asunto(s)
Hepatopatías , Humanos , Animales , Hepatopatías/metabolismo , Hepatopatías/genética , Hepatopatías/patología , Hígado/metabolismo , Hígado/patología , Enfermedades Metabólicas/metabolismo , Enfermedades Metabólicas/genética
13.
Foods ; 13(13)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38998546

RESUMEN

Electrospinning biopolymer nanofibers have emerged as promising candidates for food packaging applications. In this study, dextran/zein nanofibers were fabricated using electro-blown spinning and subsequently cross-linked via the Maillard reaction (MR) at 60 °C and 50% relative humidity. Compared to traditional electrospinning, the introduction of air-blowing improved the sample preparation speed by 10 times. SEM analysis revealed that the nanofiber morphology remained stable upon MR treatment for 24 h. FTIR spectroscopy confirmed that the MR led to a deformation in the protein conformation and an increase in hydrophilicity and elasticity in the nanofibers cross-linked for 6 h. MR treatment for 18 h considerably enhanced the hydrophobicity and elastic modulus owing to covalent bond formation. Thermal analysis indicated an improved thermal stability with increasing MR duration. Mechanical property analysis revealed an increase in elastic modulus and a decrease in elongation at break for the nanofibers cross-linked for more than 6 h, indicating a trade-off between rigidity and flexibility. Notably, the water vapor permeability of the nanofibers cross-linked for 6 and 18 h was remarkably higher, which can be ascribed to the fiber morphology retention upon water evaporation. Overall, MR-cross-linked dextran/zein/xylose nanofibers showed tunable properties, making them a suitable encapsulation system for bioactive compounds.

14.
Life Sci ; 337: 122343, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38104860

RESUMEN

The liver is the most important organ for biological transformation in the body and is crucial for maintaining the body's vital activities. Liver injury is a serious pathological condition that is commonly found in many liver diseases. It has a high incidence rate, is difficult to cure, and is prone to recurrence. Liver injury can cause serious harm to the body, ranging from mild to severe fatty liver disease. If the condition continues to worsen, it can lead to liver fibrosis and cirrhosis, ultimately resulting in liver failure or liver cancer, which can seriously endanger human life and health. Therefore, establishing an rodent model that mimics the pathogenesis and severity of clinical liver injury is of great significance for better understanding the pathogenesis of liver injury patients and developing more effective clinical treatment methods. The author of this article summarizes common chemical liver injury models, immune liver injury models, alcoholic liver injury models, drug-induced liver injury models, and systematically elaborates on the modeling methods, mechanisms of action, pathways of action, and advantages or disadvantages of each type of model. The aim of this study is to establish reliable rodent models for researchers to use in exploring anti-liver injury and hepatoprotective drugs. By creating more accurate theoretical frameworks, we hope to provide new insights into the treatment of clinical liver injury diseases.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Hepatopatías , Enfermedad del Hígado Graso no Alcohólico , Humanos , Hígado/metabolismo , Hepatopatías/patología , Cirrosis Hepática/patología , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Sustancias Protectoras/farmacología , Enfermedad del Hígado Graso no Alcohólico/metabolismo
15.
Nutrients ; 16(10)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38794735

RESUMEN

Maintaining the balance and stability of the gut microbiota is crucial for the gut health and growth development of humans and animals. Bacillus licheniformis (B. licheniformis) has been reported to be beneficial to the gut health of humans and animals, whereas the probiotic effects of a new strain, B. licheniformis HD173, remain uncertain. In this study, nursery piglets were utilized as animal models to investigate the extensive impact of B. licheniformis HD173 on gut microbiota, metabolites, and host health. The major findings were that this probiotic enhanced the growth performance and improved the health status of the nursery piglets. Specifically, it reduced the level of pro-inflammatory cytokines IL-1ß and TNF-α in the serum while increasing the level of IL-10 and SOD. In the gut, B. licheniformis HD173 reduced the abundance of pathogenic bacteria such as Mycoplasma, Vibrio, and Vibrio metschnikovii, while it increased the abundance of butyrate-producing bacteria, including Oscillospira, Coprococcus, and Roseburia faecis, leading to an enhanced production of butyric acid. Furthermore, B. licheniformis HD173 effectively improved the gut metabolic status, enabling the gut microbiota to provide the host with stronger metabolic abilities for nutrients. In summary, these findings provide scientific evidence for the utilization of B. licheniformis HD173 in the development and production of probiotic products for maintaining gut health in humans and animals.


Asunto(s)
Bacillus licheniformis , Microbioma Gastrointestinal , Probióticos , Animales , Microbioma Gastrointestinal/fisiología , Porcinos , Modelos Animales , Bacterias/crecimiento & desarrollo , Bacterias/clasificación , Bacterias/metabolismo
16.
Am J Med Sci ; 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39009282

RESUMEN

BACKGROUND: Whether Astragalus membranaceus is an effective drug in treatment of ulcerative colitis (UC) and how it exhibit activity effect on UC is unclear. METHODS: TCMSP, GeneCards, String, and DAVID database were used to screening target genes construct PPI network and performed for GO and KEGG pathway enrichment analysis respectively. Molecular docking and animal experiment were performed. The body weight and disease activity index (DAI) of mice were recorded. ELISA kits were used to detect the levels of CAT, SOD, MDA and IL-6, IL-10, TNF-α in the blood of mice. Western blot kits were utilized to measured the expressions of MAPK14, RB1, MAPK1, JUN, ATK1, and IL2 proteins. RESULTS: The active components of Astragalus membranaceus mainly including 7-O-methylisomucronulatol, quercetin, kaempferol, formononetin and isrhamnetin. Astragalus membranaceus may inhibited the expression of TNF-α, IL-6, MDA, and promoted the expression of CAT, SOD, IL-10. The expression levels of MAPK14, RB1, MAPK1, JUN and ATK1 proteins were significantly decreased while IL2 protein increased administrated with Astragalus membranaceus. CONCLUSIONS: Astragalus membranaceus is an effective drug in treatment of UC according to related to above targets that may exhibits the anti-UC effect via its antioxidant pathway and regulating the balance of pro-inflammatory and anti-inflammatory factors.

17.
J Vet Med Sci ; 86(5): 524-528, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38556348

RESUMEN

To conduct an epidemiological study of hepatitis E virus (HEV) in Japanese wild boars, we collected 179 serum and 162 fecal specimens from wild boars in eight Japanese prefectures; 39 of the serum samples (21.8%) were positive for anti-HEV IgG antibodies. RT-qPCR revealed HEV RNA in 11 serum samples (6.1%) and 5 fecal samples (3.1%). We obtained 412 bp of the viral genome sequences of ORF2 from five pairs of serum and fecal samples. All strains were subtype b in genotype 3 (HEV-3b) but separated into different clusters. We determined the entire genome sequence of HEV-3b strain WB0567 using a fecal specimen and isolated this strain by cell culture using PLC/PRF/5 cells. Eleven nucleotide mutations had occurred during virus replication. These results suggest that HEV-3b circulated uniformly among wild boars in Japan. Direct sequencing using a suspected animal's samples is indispensable for predicting original HEV nucleotide sequences.


Asunto(s)
Heces , Genotipo , Virus de la Hepatitis E , Hepatitis E , Sus scrofa , Enfermedades de los Porcinos , Animales , Virus de la Hepatitis E/genética , Virus de la Hepatitis E/aislamiento & purificación , Virus de la Hepatitis E/clasificación , Japón/epidemiología , Sus scrofa/virología , Hepatitis E/veterinaria , Hepatitis E/virología , Hepatitis E/epidemiología , Heces/virología , Enfermedades de los Porcinos/virología , Enfermedades de los Porcinos/epidemiología , Porcinos , Filogenia , Genoma Viral , ARN Viral/genética
18.
World J Clin Cases ; 12(1): 1-8, 2024 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-38292634

RESUMEN

Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder characterized by hyperglycemia and insulin resistance. The global prevalence of T2DM has reached epidemic proportions, affecting approximately 463 million adults worldwide in 2019. Current treatments for T2DM include lifestyle modifications, oral antidiabetic agents, and insulin therapy. However, these therapies may carry side effects and fail to achieve optimal glycemic control in some patients. Therefore, there is a growing interest in the role of gut microbiota and more gut-targeted therapies in the management of T2DM. The gut microbiota, which refers to the community of microorganisms that inhabit the human gut, has been shown to play a crucial role in the regulation of glucose metabolism and insulin sensitivity. Alterations in gut microbiota composition and diversity have been observed in T2DM patients, with a reduction in beneficial bacteria and an increase in pathogenic bacteria. This dysbiosis may contribute to the pathogenesis of the disease by promoting inflammation and impairing gut barrier function. Several gut-targeted therapies have been developed to modulate the gut microbiota and improve glycemic control in T2DM. One potential approach is the use of probiotics, which are live microorganisms that confer health benefits to the host when administered in adequate amounts. Several randomized controlled trials have demonstrated that certain probiotics, such as Lactobacillus and Bifidobacterium species, can improve glycemic control and insulin sensitivity in T2DM patients. Mechanisms may include the production of short-chain fatty acids, the improvement of gut barrier function, and the reduction of inflammation. Another gut-targeted therapy is fecal microbiota transplantation (FMT), which involves the transfer of fecal material from a healthy donor to a recipient. FMT has been used successfully in the treatment of Clostridioides difficile infection and is now being investigated as a potential therapy for T2DM. A recent randomized controlled trial showed that FMT from lean donors improved glucose metabolism and insulin sensitivity in T2DM patients with obesity. However, FMT carries potential risks, including transmission of infectious agents and alterations in the recipient's gut microbiota that may be undesirable. In addition to probiotics and FMT, other gut-targeted therapies are being investigated for the management of T2DM, such as prebiotics, synbiotics, and postbiotics. Prebiotics are dietary fibers that promote the growth of beneficial gut bacteria, while synbiotics combine probiotics and prebiotics. Postbiotics refer to the metabolic products of probiotics that may have beneficial effects on the host. The NIH SPARC program, or the Stimulating Peripheral Activity to Relieve Conditions, is a research initiative aimed at developing new therapies for a variety of health conditions, including T2DM. The SPARC program focuses on using electrical stimulation to activate peripheral nerves and organs, in order to regulate glucose levels in the body. The goal of this approach is to develop targeted, non-invasive therapies that can help patients better manage their diabetes. One promising area of research within the SPARC program is the use of electrical stimulation to activate the vagus nerve, which plays an important role in regulating glucose metabolism. Studies have shown that vagus nerve stimulation can improve insulin sensitivity and lower blood glucose levels in patients with T2DM. Gut-targeted therapies, such as probiotics and FMT, have shown potential for improving glycemic control and insulin sensitivity in T2DM patients. However, further research is needed to determine the optimal dose, duration, and safety of these therapies.

19.
Med Eng Phys ; 128: 104169, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38789212

RESUMEN

Despite the fact that lower back pain caused by degenerative lumbar spine pathologies seriously affects the quality of life, however, there is a paucity of research on the biomechanical properties of different auxiliary fixation systems for its primary treatment (oblique lumbar interbody fusion) under vibratory environments. In order to study the effects of different fixation systems of OLIF surgery on the vibration characteristics of the human lumbar spine under whole-body vibration (WBV), a finite element (FE) model of OLIF surgery with five different fixation systems was established by modifying a previously established model of the normal lumbar spine (L1-S1). In this study, a compressive follower load of 500 N and a sinusoidal axial vertical load of ±40 N at the frequency of 5 Hz with a duration of 0.6 s was applied. The results showed that the bilateral pedicle screw fixation model had the highest resistance to cage subsidence and maintenance of disc height under WBV. In contrast, the lateral plate fixation model exerted very high stresses on important tissues, which would be detrimental to the patient's late recovery and reduction of complications. Therefore, this study suggests that drivers and related practitioners who are often in vibrating environments should have bilateral pedicle screws for OLIF surgery, and side plates are not recommended to be used as a separate immobilization system. Additionally, the lateral plate is not recommended to be used as a separate fixation system.


Asunto(s)
Análisis de Elementos Finitos , Vértebras Lumbares , Fusión Vertebral , Vibración , Fusión Vertebral/instrumentación , Vértebras Lumbares/cirugía , Humanos , Fenómenos Biomecánicos , Tornillos Pediculares
20.
Phys Rev E ; 109(5-1): 054123, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38907436

RESUMEN

In this study, we explore the quantum critical phenomena in generalized Aubry-André models, with a particular focus on the scaling behavior at various filling states. Our approach involves using quantum fidelity susceptibility to precisely identify the mobility edges in these systems. Through a finite-size scaling analysis of the fidelity susceptibility, we are able to determine both the correlation-length critical exponent and the dynamical critical exponent at the critical point of the generalized Aubry-André model. Based on the Diophantine equation conjecture, we can determines the number of subsequences of the Fibonacci sequence and the corresponding scaling functions for a specific filling fraction, as well as the universality class. Our findings demonstrate the effectiveness of employing the generalized fidelity susceptibility for the analysis of unconventional quantum criticality and the associated universal information of quasiperiodic systems in cutting-edge quantum simulation experiments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA