Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Nano Lett ; 24(18): 5444-5452, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38639448

RESUMEN

We report, for the first time, a new synthetic strategy for the preparation of crystalline two-dimensional olefin-linked covalent organic frameworks (COFs) based on aldol condensation between benzodifurandione and aromatic aldehydes. Olefin-linked COFs can be facilely crystallized through either a pyridine-promoted solvothermal process or a benzoic anhydride-mediated organic flux synthesis. The resultant COF leaf with high in-plane π-conjugation exhibits efficient visible-light-driven photoreduction of carbon dioxide (CO2) with water (H2O) in the absence of any photosensitizer, sacrificial agents, or cocatalysts. The production rate of carbon monoxide (CO) reaches as high as 158.1 µmol g-1 h-1 with near 100% CO selectivity, which is accompanied by the oxidation of H2O to oxygen. Both theoretical and experimental results confirm that the key lies in achieving exceptional photoinduced charge separation and low exciton binding. We anticipate that our findings will facilitate new possibilities for the development of semiconducting COFs with structural diversity and functional variability.

2.
Small ; 19(27): e2208118, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36965021

RESUMEN

The development of sp2 -carbon-linked covalent organic frameworks (sp2 c-COFs) as artificial photocatalysts for solar-driven conversion of CO2 into chemical feedstock has captured growing attention, but catalytic performance has been significantly limited by their intrinsic organic linkages. Here, a simple, yet efficient approach is reported to improve the CO2 photoreduction on metal-free sp2 c-COFs by rationally regulating their intrinsic π-conjugation. The incorporation of ethynyl groups into conjugated skeletons affords a significant improvement in π-conjugation and facilitates the photogenerated charge separation and transfer, thereby boosting the CO2 photoreduction in a solid-gas mode with only water vapor and CO2 . The resultant CO production rate reaches as high as 382.0 µmol g-1  h-1 , ranking at the top among all additive-free CO2 photoreduction catalysts. The simple modulation approach not only enables to achieve enhanced CO2 reduction performance but also simultaneously gives a rise to extend the understanding of structure-property relationship and offer new possibilities for the development of new π-conjugated COF-based artificial photocatalysts.

3.
Reprod Biol Endocrinol ; 20(1): 90, 2022 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35710416

RESUMEN

BACKGROUND: Nonobstructive azoospermia (NOA) is one of the most difficult forms of male infertility to treat, and its pathogenesis is still unclear. miRNAs can regulate autophagy by affecting their target gene expression. Our previous study found that miR-188-3p expression in NOA patients was low. There are potential binding sites between the autophagy gene ATG7 and miR-188-3p. This study aimed to verify the binding site between miR-188-3p and ATG7 and whether miR-188-3p affects autophagy and participates in NOA by regulating ATG7 to influence the autophagy marker genes LC3 and Beclin-1. METHODS: Testicular tissue from 16 NOA patients and 16 patients with normal spermatogenesis and 5 cases in each group of pathological sections were collected. High-throughput sequencing was performed to detect mRNA expression differences. Quantitative real-time polymerase chain reaction (qRT-PCR), Western blotting, immunohistochemical staining and immunofluorescence were used to detect protein localization and expression. Autophagosome changes were detected by electron microscopy. The targeting relationship between miR-188-3p and ATG7 was confirmed by a luciferase assay. RESULTS: ATG7 protein was localized in the cytoplasm of spermatogenic cells at all levels, and the ATG7 gene (p = 0.019) and protein (p = 0.000) were more highly expressed in the NOA group. ATG7 expression after overexpression/inhibition of miR-188-3p was significantly lower (p = 0.029)/higher (p = 0.021) than in the control group. After overexpression of miR-188-3p, the ATG7 3'UTR-WT luciferase activity was impeded (p = 0.004), while the ATG7 3'UTR-MUT luciferase activity showed no significant difference (p = 0.46). LC3 (p = 0.023) and Beclin-1 (p = 0.041) expression in the NOA group was significantly higher. LC3 and Beclin-1 gene expression after miR-188-3p overexpression/inhibition was significantly lower (p = 0.010 and 0.024, respectively) and higher (p = 0.024 and 0.049, respectively). LC3 punctate aggregation in the cytoplasm decreased after overexpression of miR-188-3p, while the LC3 punctate aggregation in the miR-188-3p inhibitor group was higher. The number of autophagosomes in the miR-188-3p mimic group was lower than the number of autophagosomes in the mimic NC group. CONCLUSIONS: LC3 and Beclin-1 were more highly expressed in NOA testes and negatively correlated with the expression of miR-188-3p, suggesting that miR-188-3p may be involved in the process of autophagy in NOA. miR-188-3p may regulate its target gene ATG7 to participate in autophagy anDual luciferase experiment d affect the development of NOA.


Asunto(s)
Azoospermia , MicroARNs , Regiones no Traducidas 3' , Autofagia/genética , Proteína 7 Relacionada con la Autofagia/genética , Azoospermia/genética , Beclina-1/genética , Humanos , Masculino , MicroARNs/genética , MicroARNs/metabolismo
4.
Chembiochem ; 21(15): 2143-2148, 2020 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-32189429

RESUMEN

Penicillin G acylase (PGA) has been immobilized on a lanthanum-incorporated mesostructured cellular foam (La-MCF) support by using the interaction between the strong Lewis acid sites on the surface of La-MCF and the free amino groups of lysine residues of PGA. The La-MCF support was successfully synthesized in situ through the addition of a citric acid (CA) complexant. The results of pyridine-IR spectroscopy show the presence of strong Lewis acid sites on the surface of the prepared La-MCF (with CA), attributed to the incorporation of lanthanum species into the framework of MCF. Through interaction with the strong Lewis acid sites, the enzymes can be firmly immobilized on the surface of the support. The results indicate that PGA/La-MCF (with CA) exhibits a high specific activity and greatly enhanced operational stability. For the hydrolysis of penicillin G potassium salt, the initial specific activity of PGA/La-MCF (with CA) reaches 10023 U/g. Even after being recycled 10 times, PGA/La-MCF (with CA) retains 89 % of its initial specific activity, much higher than the 77 % of PGA/Si-MCF.


Asunto(s)
Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Lantano/química , Penicilina Amidasa/química , Penicilina Amidasa/metabolismo , Dióxido de Silicio/química , Ácidos de Lewis/química , Bases de Lewis/química , Porosidad
5.
Angew Chem Int Ed Engl ; 57(11): 2816-2821, 2018 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-29285842

RESUMEN

Achieving homogeneous dispersion of nanoporous fillers within membrane architectures remains a great challenge for mixed-matrix membrane (MMMs) technology. Imparting solution processability of nanoporous materials would help advance the development of MMMs for membrane-based gas separations. A mechanochemically assisted oxidative coupling polymerization strategy was used to create a new family of soluble nanoporous polymer networks. The solid-state ball-milling method affords inherent molecular weight control over polymer growth and therefore provides unexpected solubility for the resulting nanoporous frameworks. MMM-based CO2 /CH4 separation performance was significantly accelerated by these new soluble fillers. We anticipate this facile method will facilitate new possibilities for the rational design and synthesis of soluble nanoporous polymer networks and promote their applications in membrane-based gas separations.

6.
J Am Chem Soc ; 138(36): 11497-500, 2016 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-27584153

RESUMEN

An in situ doping strategy has been developed for the generation of a novel family of hexaazatriphenylene-based conjugated triazine frameworks (CTFs) for efficient CO2 capture. The resulting task-specific materials exhibit an exceptionally high CO2 uptake capacity (up to 4.8 mmol g(-1) at 297 K and 1 bar). The synergistic effects of ultrananoporosity and rich N/O codoped CO2-philic sites bestow the framework with the highest CO2 adsorption capacity among known porous organic polymers (POPs). This innovative approach not only enables superior CO2 separation performance but also provides tunable control of surface features on POPs, thereby affording control over bulk material properties. We anticipate this novel strategy will facilitate new possibilities for the rational design and synthesis of nanoporous materials for carbon capture.

7.
Angew Chem Int Ed Engl ; 53(12): 3134-7, 2014 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-24677672

RESUMEN

The synthesis of mesoporous Prussian blue analogues through a template-free methodology and the application of these mesoporous materials as high-performance cathode materials in sodium-ion batteries is presented. Crystalline mesostructures were produced through a synergistically coupled nanocrystal formation and aggregation mechanism. As cathodes for sodium-ion batteries, the Prussian blue analogues all show a reversible capacity of 65 mA h g-1 at low current rate and show excellent cycle stability. The reported method stands as an environmentally friendly and low-cost alternative to hard or soft templating for the fabrication of mesoporous materials.

8.
Vet Sci ; 11(6)2024 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-38922013

RESUMEN

Platelet-derived growth factor B (PDGFB), as an important cellular growth factor, is widely involved in the regulation of cellular events such as cell growth, proliferation, and differentiation. Although important, the expression characteristics and biological functions in the mammalian reproductive system remain poorly understood. In this study, the PDGFB gene of Tibetan sheep was cloned by RT-PCR, and its molecular characteristics were analyzed. Subsequently, the expression of the PDGFB gene in the testes and epididymides (caput, corpus, and cauda) of Tibetan sheep at different developmental stages (3 months, 1 year, and 3 years) was examined by qRT-PCR and immunofluorescence staining. A bioinformatic analysis of the cloned sequences revealed that the CDS region of the Tibetan sheep PDGFB gene is 726 bp in length and encodes 241 amino acids with high homology to other mammals, particularly goats and antelopes. With the increase in age, PDGFB expression showed an overall trend of first decreasing and then increasing in the testis and epididymis tissues of Tibetan sheep, and the PDGFB mRNA expression at 3 months of age was extremely significantly higher than that at 1 and 3 years of age (p < 0.05). The PDGFB protein is mainly distributed in testicular red blood cells and Leydig cells in Tibetan sheep at all stages of development, as well as red blood cells in the blood vessel, principal cells, and the pseudostratified columnar ciliated epithelial cells of each epididymal duct epithelium. In addition, PDGFB protein expression was also detected in the spermatocytes of the 3-month-old group, spermatids of the 1-year-old group, spermatozoa and interstitial cells of the 3-year-old group, and loose connective tissue in the epididymal duct space in each developmental period. The above results suggest that the PDGFB gene, as an evolutionarily conserved gene, may play multiple roles in the development and functional maintenance of testicular cells (such as red blood cells, Leydig cells, and germ cells) and epididymal cells (such as red blood cells, principal cells, and ciliated epithelial cells) during testicular and epididymal development, which lays a foundation for the further exploration of the mechanisms by which the PDGFB gene influences spermatogenesis in Tibetan sheep.

9.
Nanomaterials (Basel) ; 14(12)2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38921936

RESUMEN

In recent years, microplastics (MPs) have emerged as a significant environmental pollutant, garnering substantial attention for their migration and transformation behaviors in natural environments. MPs frequently infiltrate natural porous media such as soil, sediment, and rock through various pathways, posing potential threats to ecological systems and human health. Consequently, the migration and adsorption mechanisms applied to MPs in porous media have been extensively studied. This paper aims to elucidate the migration mechanisms of MPs in porous media and their influencing factors through a systematic review. The review encompasses the characteristics of MPs, the physical properties of porous media, and hydrodynamic factors. Additionally, the paper further clarifies the adsorption mechanisms of MPs in porous media to provide theoretical support for understanding their environmental behavior and fate. Furthermore, the current mainstream detection techniques for MPs are reviewed, with an analysis of the advantages, disadvantages, and applications of each technique. Finally, the paper identifies the limitations and shortcomings of current research and envisions future research directions.

10.
J Am Chem Soc ; 135(26): 9572-5, 2013 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-23796254

RESUMEN

A template-free synthesis of a hierarchical microporous-mesoporous metal-organic framework (MOF) of zinc(II) 2,5-dihydroxy-1,4-benzenedicarboxylate (Zn-MOF-74) is reported. The surface morphology and porosity of the bimodal materials can be modified by etching the pore walls with various synthesis solvents for different reaction times. This template-free strategy enables the preparation of stable frameworks with mesopores exceeding 15 nm, which was previously unattained in the synthesis of MOFs by the ligand-extension method.


Asunto(s)
Compuestos Organometálicos/síntesis química , Ácidos Ftálicos/química , Zinc/química , Modelos Moleculares , Compuestos Organometálicos/química , Tamaño de la Partícula , Porosidad , Propiedades de Superficie
11.
Macromol Rapid Commun ; 34(5): 452-9, 2013 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-23450623

RESUMEN

A porous, nitrogen-doped carbonaceous free-standing membrane (TFMT-550) is prepared by a facile template-free method using letrozole as an intermediate to a triazole-functionalized-triazine framework, followed by carbonization. Such adsorption/diffusion membranes exhibit good separation performance of CO2 over N2 and surpassing the most recent Robeson upper bound. An exceptional ideal CO2 /N2 permselectivity of 47.5 was achieved with a good CO2 permeability of 2.40 × 10(-13) mol m m(-2) s(-1) Pa(-1) . The latter results arise from the presence of micropores, narrow distribution of small mesopores and from the strong dipole-quadrupole interactions between the large quadrupole moment of CO2 molecules and the polar sites associated with N groups (e.g., triazine units) within the framework.

12.
Adv Sci (Weinh) ; 10(14): e2206807, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36922735

RESUMEN

Ultrasensitive flexible pressure sensors with excellent linearity are essential for achieving tactile perception. Although microstructured dielectrics have endowed capacitive sensors with ultrahigh sensitivity, the compromise of sensitivity with increasing pressure is an issue yet to be resolved. Herein, a spontaneously wrinkled MWCNT/PDMS dielectric layer is proposed to realize the excellent sensitivity and linearity of capacitive sensors for tactile perception. The synergistic effect of a high dielectric constant and wrinkled microstructures enables the sensor to exhibit linearity up to 21 kPa with a sensitivity of 1.448 kPa-1 and a detection limit of 0.2 Pa. Owing to these merits, the sensor monitors subtle physiological signals such as various arterial pulses and respiration. This sensor is further integrated into a fully multimaterial 3D-printed soft pneumatic finger to realize material hardness perception. Eight materials with different hardness values are successfully discriminated, and the capacitance of the sensor varies linearly (R2 > 0.975) with increasing hardness. Moreover, the sensitivity to the material hardness can be tuned by controlling the inflation pressure of the soft finger. As a proof of concept, the finger is used to discriminate pork fats with different hardness, paving the way for hardness discrimination in clinical palpation.

13.
J Am Chem Soc ; 134(25): 10478-84, 2012 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-22631446

RESUMEN

A general strategy for the synthesis of porous, fluorescent, triazine-framework-based membranes with intrinsic porosity through an aromatic nitrile trimerization reaction is presented. The essence of this strategy lies in the use of a superacid to catalyze the cross-linking reaction efficiently at a low temperature, allowing porous polymer membrane architectures to be facilely derived. With functionalized triazine units, the membrane exhibits an increased selectivity for membrane separation of CO(2) over N(2). The good ideal CO(2)/N(2) selectivity of 29 ± 2 was achieved with a CO(2) permeability of 518 ± 25 barrer. Through this general synthesis protocol, a new class of porous polymer membranes with tunable functionalities and porosities can be derived, significantly expanding the currently limited library of polymers with intrinsic microporosity for synthesizing functional membranes in separation, catalysis, and energy storage/conversion.

14.
Chemosphere ; 294: 133735, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35085615

RESUMEN

Single-atom Fe catalysts have shown great potential for Fenton-like technology in organic pollutant decomposition. However, the underlying reaction pathway and the identification of Fe active sites capable of activating peroxymonosulfate (PMS) across a wide pH range remain unknown. We presented a novel strategy for deciphering the production of singlet oxygen (1O2) by regulating the Fe active sites in this study. Fe single atoms loaded on nitrogen-doped porous carbon (FeSA-CN) catalysts were synthesized using a cage encapsulation method and compared to Fe-nanoparticle-loaded catalysts. It was discovered that FeSA-CN catalysts served as efficient PMS activators for pollutant decomposition over a wide pH range. Several analytical measurements and density functional theory calculations revealed that the pyridinic N-ligated Fe single atom (Fe-pyridine N4) was involved in the production of 1O2 by the binding of two PMS ions, resulting in an excellent catalytic performance for PMS adsorption/activation. This work has the potential to not only improve the understanding of nonradical reaction pathway but to also provide a generalizable method for producing highly stable PMS activators with high activity for practical wastewater treatment.


Asunto(s)
Hierro , Peróxidos , Antibacterianos , Concentración de Iones de Hidrógeno , Piridinas
15.
ACS Macro Lett ; 11(1): 60-65, 2022 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-35574782

RESUMEN

A dual rate-modulation approach was implemented for the first time to create crystalline covalent triazine frameworks. Based on a new polycondensation approach, regulating the condensation rate via the exploitation of a modulated aldehyde monomer and addition of an extrinsic inhibitor affords inherent control over the polymer growth and therefore provides tunable crystallinities and porosities for the resulting triazine frameworks. The existence of rich redox-active triazine linkages gives rise to obtaining exceptional sodium storage, where 239 mAh g-1 at 1.0 A g-1 is obtained after 200 cycles. We anticipate this new protocol based on the dynamic imine metathesis will facilitate new possibilities for the construction of crystalline covalent triazine frameworks and promote their energy-related applications.

16.
Fertil Steril ; 115(2): 463-473, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33579525

RESUMEN

OBJECTIVE: To investigate the expression of aquaporin 7 (AQP7) and aquaporin 9 (AQP9) in the granulosa cells of patients with polycystic ovary syndrome (PCOS) and healthy women and detect their localization in oocytes at the germinal vesicle (GV), metaphase I (MI), MII, embryo, and blastocyst stages and the in vitro response to insulin stimulation. DESIGN: Randomized, assessor-blinded study. SETTING: Reproductive medical center. PATIENT(S): A total of 40 women (aged 20-38 years) comprising 29 cases of primary infertility and 11 cases of secondary infertility, of whom 17 had an initial diagnosis of PCOS and three received a PCOS diagnosis after an infertility examination. INTERVENTION(S): Controlling different concentrations of insulin and different treatment times in cultures of normal human granulosa cells in vitro. MAIN OUTCOME MEASURE(S): Expression of AQP7 and AQP9 genes and proteins in granulosa cells detected by real-time quantitative polymerase chain reaction, and localization in oocytes at the GV, MI, MII, embryo, and blastocyst stages by Western blot, immunohistochemical, and immunofluorescence assays, and concentrations of insulin in follicular fluid by enzyme-linked immunosorbent assay. RESULT(S): The expression levels of the AQP7 mRNA and protein in the granulosa cells of patients with PCOS were higher than found in healthy controls. We found AQP7 protein expressed in human oocytes at GV, MI, MII, embryo, and blastocyst stages; it was mainly located in the nucleoplasm. In the PCOS group, the expression level of AQP9 mRNA and protein in granulosa cells was lower, and AQP9 protein was expressed in oocytes at the GV, MI, MII, embryo, and blastocyst stages; it was localized on the nuclear membrane. Compared with healthy women, the insulin expression in patients with PCOS was higher. In cultures of normal human granulosa cells in vitro, the expression of AQP7 and AQP9 mRNA and protein decreased with the increase in insulin concentration; expression statistically significantly decreased when the insulin concentration was 100 nmol/L, and after 6 to 24 hours of exposure the lowest expression levels were found at 12 hours. CONCLUSION(S): The different localization and expression of AQP7 and AQP9 between the two groups suggests that they might be involved in oocyte maturation and embryonic development through different regulatory pathways. The expression levels of AQP7 and AQP9 were negatively correlated with insulin regulation, suggesting that insulin might affect the maturation of PCOS follicles by changing AQP7 and AQP9 expression.


Asunto(s)
Acuaporinas/biosíntesis , Regulación del Desarrollo de la Expresión Génica , Células de la Granulosa/metabolismo , Insulina/metabolismo , Oocitos/metabolismo , Síndrome del Ovario Poliquístico/metabolismo , Adulto , Acuaporinas/genética , Femenino , Humanos , Infertilidad Femenina/epidemiología , Infertilidad Femenina/genética , Infertilidad Femenina/metabolismo , Insulina/genética , Síndrome del Ovario Poliquístico/epidemiología , Síndrome del Ovario Poliquístico/genética , Método Simple Ciego , Adulto Joven
17.
Sci Rep ; 10(1): 2929, 2020 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-32076057

RESUMEN

Industrial flue gas systems include fine soot and high-temperature vapor. The continuous emission of the flue gas not only causes fine particulate pollution but also wastes considerable heat energy. Separating soot and purifying flue gas are of great significance for industrial conditions and environmental protection. In this paper, the process of cyclone soot elimination and waste heat recovery by heterogeneous condensation were coupled for the first time. The effects of the flue gas material system and separation operation parameters on the cyclone soot elimination efficiency and heat transfer efficiency were systematically investigated through unit experiments and industrial side-lines. Additionally, the mechanism of enhanced cyclone soot elimination by heterogeneous condensation was also theoretically explored. The experimental results show that the corresponding maximum cyclone heat transfer efficiency and soot elimination efficiency of the Ф40 mm cyclone separator are 42.1% and 89.2%, respectively, while the Ф80 mm cyclone separator can attain an elimination efficiency of 91% and a maximum increase of 67.3% for the heat transfer efficiency, as indicated by the industrial side-line. During the process of cyclone soot elimination and heat recovery by heterogeneous condensation, the heterogeneous condensation caused by heat transfer increases the quality difference between the flue gas molecules and soot droplets, thus improving the cyclone separation efficiency of soot.

18.
Chem Sci ; 10(9): 2585-2591, 2019 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-30996973

RESUMEN

Single-atom catalysts (SACs) have shown great potential in a wide variety of chemical reactions and become the most active new frontier in catalysis due to the maximum efficiency of metal atom use. The key obstacle in preparing SAs lies in the development of appropriate supports that can avoid aggregation or sintering during synthetic procedures. As such, achieving high loadings of isolated SAs is nontrivial and challenging. Conventional methods usually afford the formation of SAs with extremely low loadings (less than 1.5 wt%). In this work, a new in situ preparation strategy that enables the synthesis of isolated cobalt (Co) SAs with an exceptionally high metal loading, up to 5.9 wt%, is developed. The approach is based on a simple one-step pyrolysis of a nitrogen-enriched molecular carbon precursor (1,4,5,8,9,12-hexaazatriphenylene hexacarbonitrile) and CoCl2. Furthermore, due to the successful electron transfer from carbon nitride to the isolated Co SAs, we demonstrate a high-performance photocatalytic H2 production using Co SAs as a co-catalyst, and the evolution rate is measured to be 1180 µmol g-1 h-1. We anticipate that this new study will inspire the discovery of more isolated SACs with high metal loadings, evidently advancing the development of this emerging type of advanced catalysts.

19.
J Hazard Mater ; 342: 290-296, 2018 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-28843798

RESUMEN

A novel heterostructured material, cobalt phosphate-SiO2 mesostructured cellular foams (CoPO-MCF), was successfully synthesized by in situ growth. The material was characterized by X-ray diffraction (XRD), nitrogen sorption, temperature-programmed reduction (H2-TPR and CO-TPR), temperature-programmed desorption of NH3 (NH3-TPD), and X-ray photoelectron spectroscopy (XPS). A ruthenium precursor was readily introduced and highly dispersed on the CoPO nanophases of the CoPO-MCF through an impregnation method. The resulting Ru/CoPO-MCF catalyst exhibited high catalytic activity for the oxidation of vinyl chloride (VC). The results of three consecutive runs and long-term tests showed high stability of the Ru/CoPO-MCF for the catalytic oxidation of VC. The unique heterostructures of the CoPO-MCF not only improve the reducibility and acidity of the MCF but also strengthen the interaction between ruthenium oxide nanoparticles and the CoPO-MCF support, which contributes to the enhanced catalytic performance.

20.
Chem Commun (Camb) ; 54(40): 5058-5061, 2018 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-29726871

RESUMEN

A simple charge modulation approach has been developed to stabilize naked Au clusters on a nanoporous conjugated organic network. Through engineering pore walls with regulated charges, the controllable growth of Au nanoclusters has been realized. The resulting supported catalyst exhibits excellent performance in the aerobic oxidation of alcohols.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA