Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(1): e2307086120, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38147543

RESUMEN

The salt-inducible kinases (SIK) 1-3 are key regulators of pro- versus anti-inflammatory cytokine responses during innate immune activation. The lack of highly SIK-family or SIK isoform-selective inhibitors suitable for repeat, oral dosing has limited the study of the optimal SIK isoform selectivity profile for suppressing inflammation in vivo. To overcome this challenge, we devised a structure-based design strategy for developing potent SIK inhibitors that are highly selective against other kinases by engaging two differentiating features of the SIK catalytic site. This effort resulted in SIK1/2-selective probes that inhibit key intracellular proximal signaling events including reducing phosphorylation of the SIK substrate cAMP response element binding protein (CREB) regulated transcription coactivator 3 (CRTC3) as detected with an internally generated phospho-Ser329-CRTC3-specific antibody. These inhibitors also suppress production of pro-inflammatory cytokines while inducing anti-inflammatory interleukin-10 in activated human and murine myeloid cells and in mice following a lipopolysaccharide challenge. Oral dosing of these compounds ameliorates disease in a murine colitis model. These findings define an approach to generate highly selective SIK1/2 inhibitors and establish that targeting these isoforms may be a useful strategy to suppress pathological inflammation.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico , Proteínas Serina-Treonina Quinasas , Ratones , Humanos , Animales , Proteínas Serina-Treonina Quinasas/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Citocinas , Inflamación/tratamiento farmacológico , Isoformas de Proteínas , Antiinflamatorios/farmacología , Inmunidad Innata , Factores de Transcripción
2.
Biochemistry ; 60(31): 2407-2418, 2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34293856

RESUMEN

Long residence time enzyme inhibitors with a two-step binding mechanism are characterized by a high internal energy barrier for target association. This raises the question of whether optimizing residence time via further increasing this internal energy barrier would inevitably lead to insufficient target occupancy in vivo due to slow, time-dependent binding. We attempted to address this question during optimization of cyclooxygenase-2 (COX-2) inhibitors. Defining long residence time drugs with acceptable association and dissociation rate constants required for sufficient target occupancy and sustained efficacy, which we termed "balanced internal energetics", provides an important criterion for successful progression during lead optimization. Despite the advancement of several COX-2 inhibitors to marketed drugs, their detailed inhibition kinetics have been surprisingly limiting especially during the structure-activity relationship process mainly due to the lack of robust kinetic assays. Herein, we describe a reoptimized COX enzymatic assay and a novel MS-based assay enabling detailed mechanistic studies for identifying long residence time COX-2 inhibitors with balanced internal energetics. These efforts led to the discovery of promising leads possessing dissociation half-lives of ≤40 h, much greater than the values of 6 and 0.71 h for two marketed drugs, etoricoxib and celecoxib, respectively. Importantly, the inhibition rate constants remain comparable to those of the marketed drugs and above the lower limits set by the criteria of balanced internal energetics, predicting sufficient target occupancy required for efficacy. Taken together, this study demonstrates the feasibility of increasing the internal energy barrier as a viable approach for lead optimization toward discovering long residence time drug candidates.


Asunto(s)
Inhibidores de la Ciclooxigenasa 2/química , Descubrimiento de Drogas/métodos , Pruebas de Enzimas/métodos , Furanos/química , Espectrometría de Masas/métodos , Piridinas/química , Celecoxib/química , Celecoxib/farmacología , Ciclooxigenasa 2/metabolismo , Inhibidores de la Ciclooxigenasa 2/farmacología , Etoricoxib/química , Etoricoxib/farmacología , Fluorescencia , Furanos/farmacología , Humanos , Hidrógeno/química , Cinética , Modelos Teóricos , Oxígeno/química , Pirazoles/química , Pirazoles/farmacología , Piridinas/farmacología , Termodinámica , Factores de Tiempo
3.
J Pharmacol Exp Ther ; 372(3): 339-353, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31818916

RESUMEN

The serine hydrolase monoacylglycerol lipase (MAGL) is the rate-limiting enzyme responsible for the degradation of the endocannabinoid 2-arachidonoylglycerol (2-AG) into arachidonic acid and glycerol. Inhibition of 2-AG degradation leads to elevation of 2-AG, the most abundant endogenous agonist of the cannabinoid receptors (CBs) CB1 and CB2. Activation of these receptors has demonstrated beneficial effects on mood, appetite, pain, and inflammation. Therefore, MAGL inhibitors have the potential to produce therapeutic effects in a vast array of complex human diseases. The present report describes the pharmacologic characterization of [1-(4-fluorophenyl)indol-5-yl]-[3-[4-(thiazole-2-carbonyl)piperazin-1-yl]azetidin-1-yl]methanone (JNJ-42226314), a reversible and highly selective MAGL inhibitor. JNJ-42226314 inhibits MAGL in a competitive mode with respect to the 2-AG substrate. In rodent brain, the compound time- and dose-dependently bound to MAGL, indirectly led to CB1 occupancy by raising 2-AG levels, and raised norepinephrine levels in cortex. In vivo, the compound exhibited antinociceptive efficacy in both the rat complete Freund's adjuvant-induced radiant heat hypersensitivity and chronic constriction injury-induced cold hypersensitivity models of inflammatory and neuropathic pain, respectively. Though 30 mg/kg induced hippocampal synaptic depression, altered sleep onset, and decreased electroencephalogram gamma power, 3 mg/kg still provided approximately 80% enzyme occupancy, significantly increased 2-AG and norepinephrine levels, and produced neuropathic antinociception without synaptic depression or decreased gamma power. Thus, it is anticipated that the profile exhibited by this compound will allow for precise modulation of 2-AG levels in vivo, supporting potential therapeutic application in several central nervous system disorders. SIGNIFICANCE STATEMENT: Potentiation of endocannabinoid signaling activity via inhibition of the serine hydrolase monoacylglycerol lipase (MAGL) is an appealing strategy in the development of treatments for several disorders, including ones related to mood, pain, and inflammation. [1-(4-Fluorophenyl)indol-5-yl]-[3-[4-(thiazole-2-carbonyl)piperazin-1-yl]azetidin-1-yl]methanone is presented in this report to be a novel, potent, selective, and reversible noncovalent MAGL inhibitor that demonstrates dose-dependent enhancement of the major endocannabinoid 2-arachidonoylglycerol as well as efficacy in models of neuropathic and inflammatory pain.


Asunto(s)
Encéfalo/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Leucocitos Mononucleares/efectos de los fármacos , Monoacilglicerol Lipasas/antagonistas & inhibidores , Piperazinas/farmacología , Animales , Unión Competitiva , Encéfalo/enzimología , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/sangre , Escherichia coli/enzimología , Escherichia coli/genética , Células HeLa , Humanos , Cinética , Leucocitos Mononucleares/enzimología , Masculino , Ratones Endogámicos C57BL , Estructura Molecular , Monoacilglicerol Lipasas/genética , Dolor/tratamiento farmacológico , Piperazinas/sangre , Unión Proteica , Ratas Sprague-Dawley , Receptor Cannabinoide CB1/agonistas , Receptor Cannabinoide CB2/agonistas , Sueño REM/efectos de los fármacos , Especificidad por Sustrato
4.
Bioorg Med Chem Lett ; 28(6): 1043-1049, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29486970

RESUMEN

A series of isoquinuclidine benzamides as glycine uptake inhibitors for the treatment of schizophrenia are described. Potency, lipophilicity, and intrinsic human microsomal clearance were parameters for optimization. Potency correlated with the nature of the ortho substituents of the benzamide ring, and reductions in lipophilicity could be achieved through heteroatom incorporation in the benzamide and pendant phenyl moieties. Improvements in human CLint were achieved through changes in ring size and the N-alkyl group of the isoquinuclidine itself, with des-alkyl derivatives (40-41, 44) demonstrating the most robust microsomal stability. Dimethylbenzamide 9 was tested in a mouse MK801 LMA assay and had a statistically significant attenuation of locomotor activity at 3 and 10 µmol/kg compared to control.


Asunto(s)
Benzamidas/farmacología , Compuestos Bicíclicos con Puentes/farmacología , Proteínas de Transporte de Glicina en la Membrana Plasmática/antagonistas & inhibidores , Administración Oral , Animales , Benzamidas/administración & dosificación , Benzamidas/química , Compuestos Bicíclicos con Puentes/administración & dosificación , Compuestos Bicíclicos con Puentes/química , Relación Dosis-Respuesta a Droga , Humanos , Inyecciones Intravenosas , Locomoción/efectos de los fármacos , Masculino , Ratones , Estructura Molecular , Ratas , Ratas Sprague-Dawley , Relación Estructura-Actividad
5.
Bioorg Med Chem Lett ; 26(1): 197-202, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26597534

RESUMEN

Fragment-based drug design (FBDD) relies on direct elaboration of fragment hits and typically requires high resolution structural information to guide optimization. In fragment-assisted drug discovery (FADD), fragments provide information to guide selection and design but do not serve as starting points for elaboration. We describe FADD and high-throughput screening (HTS) campaign strategies conducted in parallel against PDE10A where fragment hit co-crystallography was not available. The fragment screen led to prioritized fragment hits (IC50's ∼500µM), which were used to generate a hypothetical core scaffold. Application of this scaffold as a filter to HTS output afforded a 4µM hit, which, after preparation of a small number of analogs, was elaborated into a 16nM lead. This approach highlights the strength of FADD, as fragment methods were applied despite the absence of co-crystallographical information to efficiently identify a lead compound for further optimization.


Asunto(s)
Evaluación Preclínica de Medicamentos , Ensayos Analíticos de Alto Rendimiento , Inhibidores de Fosfodiesterasa/análisis , Inhibidores de Fosfodiesterasa/farmacología , Hidrolasas Diéster Fosfóricas/metabolismo , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Humanos , Modelos Moleculares , Estructura Molecular , Inhibidores de Fosfodiesterasa/síntesis química , Inhibidores de Fosfodiesterasa/química , Relación Estructura-Actividad
6.
Sci Rep ; 12(1): 14685, 2022 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-36038587

RESUMEN

8-Oxoguanine DNA glycosylase (OGG1) initiates base excision repair of the oxidative DNA damage product 8-oxoguanine. OGG1 is bifunctional; catalyzing glycosyl bond cleavage, followed by phosphodiester backbone incision via a ß-elimination apurinic lyase reaction. The product from the glycosylase reaction, 8-oxoguanine, and its analogues, 8-bromoguanine and 8-aminoguanine, trigger the rate-limiting AP lyase reaction. The precise activation mechanism remains unclear. The product-assisted catalysis hypothesis suggests that 8-oxoguanine and analogues bind at the product recognition (PR) pocket to enhance strand cleavage as catalytic bases. Alternatively, they may allosterically activate OGG1 by binding outside of the PR pocket to induce an active-site conformational change to accelerate apurinic lyase. Herein, steady-state kinetic analyses demonstrated random binding of substrate and activator. 9-Deazaguanine, which can't function as a substrate-competent base, activated OGG1, albeit with a lower Emax value than 8-bromoguanine and 8-aminoguanine. Random compound screening identified small molecules with Emax values similar to 8-bromoguanine. Paraquat-induced mitochondrial dysfunction was attenuated by several small molecule OGG1 activators; benefits included enhanced mitochondrial membrane and DNA integrity, less cytochrome c translocation, ATP preservation, and mitochondrial membrane dynamics. Our results support an allosteric mechanism of OGG1 and not product-assisted catalysis. OGG1 small molecule activators may improve mitochondrial function in oxidative stress-related diseases.


Asunto(s)
ADN Glicosilasas , Regulación Alostérica , ADN Glicosilasas/metabolismo , Reparación del ADN , Guanina/análogos & derivados , Mitocondrias/metabolismo , Especificidad por Sustrato
7.
Biochemistry ; 50(32): 6867-78, 2011 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-21728345

RESUMEN

Fatty acid amide hydrolase (FAAH) has emerged as a potential target for developing analgesic, anxiolytic, antidepressant, sleep-enhancing, and anti-inflammatory drugs, and tremendous efforts have been made to discover potent and selective inhibitors of FAAH. Most known potent FAAH inhibitors described to date employ covalent mechanisms, inhibiting the enzyme either reversibly or irreversibly. Recently, a benzothiazole-based analogue (1) has been described possessing a high potency against FAAH yet lacking a structural feature previously known to interact with FAAH covalently. However, covalent inhibition of FAAH by 1 has not been fully ruled out, and the issue of reversibility has not been addressed. Confirming previous reports, 1 inhibited recombinant human FAAH (rhFAAH) with high potency with IC(50) ~2 nM. It displayed an apparently noncompetitive and irreversible inhibition, titrating rhFAAH stoichiometrically within normal assay times. The inhibition appeared to be time dependent, but the time dependence only improved potency by a small degree (from ~8 to ~2 nM). However, mass spectrometric analyses of the reaction mixture failed to reveal any cleavage product or covalent adduct and showed full recovery of the parent compound, ruling out covalent, irreversible inhibition. Dialysis revealed recovery of enzyme activity from enzyme-inhibitor complex over a prolonged time (>10 h), demonstrating that 1 is indeed a reversible, albeit slowly dissociating inhibitor of FAAH. Molecular docking indicated that the sulfonamide group of 1 could form hydrogen bonds with several residues involved in catalysis, thereby mimicking the transition state. The long residence time displayed by 1 does not appear to derive exclusively from great thermodynamic potency and is consistent with an increased kinetic energy barrier that prevents dissociation from happening quickly.


Asunto(s)
Amidohidrolasas/antagonistas & inhibidores , Benzotiazoles/farmacología , Inhibidores Enzimáticos/farmacología , Sulfonamidas/química , Animales , Benzotiazoles/química , Células CHO , Cricetinae , Cricetulus , Inhibidores Enzimáticos/química , Humanos , Cinética , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacología , Espectrometría de Masa por Ionización de Electrospray , Termodinámica
8.
J Med Chem ; 64(15): 11570-11596, 2021 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-34279934

RESUMEN

Selective cyclooxygenase (COX)-2 inhibitors have been extensively studied for colorectal cancer (CRC) chemoprevention. Celecoxib has been reported to reduce the incidence of colorectal adenomas and CRC but is also associated with an increased risk of cardiovascular events. Here, we report a series of gut-restricted, selective COX-2 inhibitors characterized by high colonic exposure and minimized systemic exposure. By establishing acute ex vivo 18F-FDG uptake attenuation as an efficacy proxy, we identified a subset of analogues that demonstrated statistically significant in vivo dose-dependent inhibition of adenoma progression and survival extension in an APCmin/+ mouse model. However, in vitro-in vivo correlation analysis showed their chemoprotective effects were driven by residual systemic COX-2 inhibition, rationalizing their less than expected efficacies and highlighting the challenges associated with COX-2-mediated CRC disease chemoprevention.


Asunto(s)
Antineoplásicos/farmacología , Celecoxib/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Inhibidores de la Ciclooxigenasa 2/farmacología , Ciclooxigenasa 2/metabolismo , Etoricoxib/farmacología , Animales , Antineoplásicos/química , Antineoplásicos/metabolismo , Celecoxib/química , Celecoxib/metabolismo , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Inhibidores de la Ciclooxigenasa 2/química , Inhibidores de la Ciclooxigenasa 2/metabolismo , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Etoricoxib/química , Etoricoxib/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Estructura Molecular , Relación Estructura-Actividad
9.
Bioorg Med Chem Lett ; 20(16): 4878-81, 2010 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-20637614

RESUMEN

A novel series of glycine transporter 1 (GlyT1) inhibitors is described. Scoping of the heterocycle moiety of hit 4-chlorobenzenesulfonamide 1 led to replacement of the piperidine with an azepane for a modest increase in potency. Phenyl sulfonamides proved superior to alkyl and non-phenyl aromatic sulfonamides, while subsequent ortho substitution of the 2-(azepan-1-yl)-2-phenylethanamine aromatic ring yielded 39 (IC(50) 37 nM, solubility 14 microM), the most potent GlyT1 inhibitor in this series. Favorable brain-plasma ratios were observed for select compounds in pharmacokinetic studies to evaluate CNS penetration.


Asunto(s)
Azetidinas/química , Proteínas de Transporte de Glicina en la Membrana Plasmática/antagonistas & inhibidores , Sulfonamidas/química , Animales , Azepinas/química , Azetidinas/síntesis química , Azetidinas/farmacocinética , Encéfalo/metabolismo , Sistema Nervioso Central/metabolismo , Proteínas de Transporte de Glicina en la Membrana Plasmática/metabolismo , Masculino , Ratas , Ratas Sprague-Dawley , Relación Estructura-Actividad , Sulfonamidas/síntesis química , Sulfonamidas/farmacocinética , Bencenosulfonamidas
10.
J Med Chem ; 50(24): 5912-25, 2007 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-17985862

RESUMEN

Fragment-based lead generation has led to the discovery of a novel series of cyclic amidine-based inhibitors of beta-secretase (BACE-1). Initial fragment hits with an isocytosine core having millimolar potency were identified via NMR affinity screening. Structure-guided evolution of these fragments using X-ray crystallography together with potency determination using surface plasmon resonance and functional enzyme inhibition assays afforded micromolar inhibitors. Similarity searching around the isocytosine core led to the identification of a related series of inhibitors, the dihydroisocytosines. By leveraging the knowledge of the ligand-BACE-1 recognition features generated from the isocytosines, the dihydroisocytosines were efficiently optimized to submicromolar potency. Compound 29, with an IC50 of 80 nM, a ligand efficiency of 0.37, and cellular activity of 470 nM, emerged as the lead structure for future optimization.


Asunto(s)
Amidinas/síntesis química , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Ácido Aspártico Endopeptidasas/antagonistas & inhibidores , Citosina/análogos & derivados , Modelos Moleculares , Pirimidinas/síntesis química , Amidinas/química , Amidinas/farmacología , Secretasas de la Proteína Precursora del Amiloide/química , Secretasas de la Proteína Precursora del Amiloide/genética , Ácido Aspártico Endopeptidasas/química , Ácido Aspártico Endopeptidasas/genética , Línea Celular , Cristalografía por Rayos X , Citosina/síntesis química , Citosina/química , Citosina/farmacología , Transferencia Resonante de Energía de Fluorescencia , Humanos , Ligandos , Espectroscopía de Resonancia Magnética , Pirimidinas/química , Pirimidinas/farmacología , Estereoisomerismo , Relación Estructura-Actividad
11.
Biophys Chem ; 95(1): 79-90, 2002 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-11880175

RESUMEN

All kinases require an essential divalent metal for their activity. In this study, we investigated the metal dependence of cyclin-dependent kinase 4 (CDK4). With Mg(2+) as the essential metal and MgATP being the variable substrate, the maximum velocity, V, was not affected by changes in metal concentration, whereas V/K was perturbed, indicating that the metal effects were mainly derived from a change in the K(m) for MgATP. Analysis of the metal dependence of initial rates according to a simple metal binding model indicated the presence on enzyme of one activating metal-binding site with a dissociation constant, K(d(a)), of 5 +/-1 mM, and three inhibitory metal-binding sites with an averaged dissociation constant, K(d(i)), of 12+/-1 mM and that the binding of metal to the activating and inhibitory sites appeared to be ordered with binding of metal to the activating site first. Substitution of Mn(2+) for Mg(2+) yielded similar metal dependence kinetics with a value of 1.0+/-0.1 and 4.7+/-0.1 for K(d(a)) and K(d(i)), respectively. The inhibition constants for the inhibition of CDK4 by MgADP and a small molecule inhibitor were also perturbed by Mg(2+). K(d(a)) values estimated from the metal variation of the inhibition of CDK4 by MgADP (6+/-3 mM) and a small molecule inhibitor (3+/-1 mM), were in good agreement with the K(d(a)) value (5+/-1 mM) obtained from the metal variation of the initial rate of CDK4. By using the van't Hoff plot, the temperature dependence of K(d(a)) and K(d(i)) yielded an enthalpy of -6.0 +/- 1.1 kcal/mol for binding of Mg(2+) to the activating site and -3.2 +/- 0.6 kcal/mol for Mg(2+) binding to the inhibitory sites. The values of associated entropy were also negative, indicating that these metal binding reactions were entirely enthalpy-driven. These data were consistent with metal binding to multiple sites on CDK4 that perturbs the enzyme structure, modulates the enzyme activity, and alters the affinities of inhibitor for the metal-bound enzyme species. However, the affinities of small molecule inhibitors for CDK4 were not affected by the change of metal from Mg(2+) to Mn(2+), suggesting that the structures of enzyme-Mg(2+) and enzyme-Mn(2+) were similar.


Asunto(s)
Quinasas Ciclina-Dependientes/metabolismo , Magnesio/química , Manganeso/química , Proteínas Proto-Oncogénicas , Algoritmos , Cromatografía por Intercambio Iónico , Quinasa 4 Dependiente de la Ciclina , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Glutatión/química , Concentración de Iones de Hidrógeno , Cinética , Proteínas Recombinantes de Fusión/química , Temperatura , Termodinámica
12.
Eur J Pharmacol ; 667(1-3): 74-9, 2011 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-21645511

RESUMEN

Fatty acid amide hydrolase (FAAH) hydrolyzes several bioactive lipids including the endocannabinoid anandamide. Synthetic FAAH inhibitors are being generated to help define the biological role(s) of this enzyme, the lipids it degrades in vivo, and the disease states that might benefit from its pharmacological modulation. AZ513 inhibits human FAAH (IC(50)=551 nM), is 20-fold more potent against rat FAAH (IC(50)=27 nM), and is inactive at 10 µM against the serine hydrolases acetylcholinesterase, thrombin, and trypsin. In contrast to most other potent FAAH inhibitors, AZ513 showed no evidence of covalently modifying the enzyme and displayed reversible inhibition. In an enzyme cross-competition assay, AZ513 did not compete with OL-135, an inhibitor that binds to the catalytic site in FAAH, which indicates that AZ513 does not bind to the catalytic site and is therefore noncompetitive with respect to substrate. AZ513 has good cell penetration as demonstrated by inhibition of anandamide hydrolysis in human FAAH-transfected HEK293 cells (IC(50)=360 nM). AZ513 was tested in a rat spinal cord slice preparation where CB(1) activation reduces excitatory post-synaptic currents (EPSCs). In this native tissue assay of synaptic activity, AZ513 reduced EPSCs, which is consistent with inhibiting endogenous FAAH and augmenting endocannabinoid tone. AZ513 has a unique biochemical profile compared with other published FAAH inhibitors and will be a useful tool compound to further explore the role of FAAH in various biological processes.


Asunto(s)
Amidohidrolasas/antagonistas & inhibidores , Benzamidas/química , Benzamidas/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Pirimidinas/química , Pirimidinas/farmacología , Pirroles/química , Pirroles/farmacología , Animales , Células CHO , Cricetinae , Cricetulus , Células HEK293 , Humanos , Técnicas In Vitro , Masculino , Técnicas de Placa-Clamp , Ratas , Médula Espinal/efectos de los fármacos , Médula Espinal/fisiología , Sinapsis/efectos de los fármacos
13.
Mol Pharmacol ; 71(3): 902-11, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17172464

RESUMEN

Talnetant and osanetant, two structurally diverse antagonists of neurokinin-3 receptor (NK3), displayed distinct modes of action in Ca2+ mobilization. Although talnetant showed a normal Schild plot with a slope close to unity and a Kb similar to its Ki value in binding, osanetant presented an aberrant Schild with a steep slope (3.3 +/- 0.5) and a Kb value (12 nM) significantly elevated compared with its Ki value (0.8 nM) in binding. Kinetic binding experiments indicated a simple one-step binding mechanism with relatively fast on- and off-rates for both antagonists, arguing against slow onset of antagonism as the reason for abnormal Schild. This conclusion was supported by prolonged preincubation of antagonist that failed to improve the observed aberrant Schild. In ligand cross-competition binding, both talnetant and osanetant displayed linear reciprocal plots of identical slope when [MePhe7]neurokinin B (NKB) was used as the other competition partner with 125I-[MePhe7]NKB as the radioligand, indicating competitive binding of either antagonist with regard to [MePhe7]NKB. Similar patterns were obtained when talnetant was tested against osanetant, indicating competitive binding between the two antagonists as well. These results were reproduced when [3H]4-quinolinecarboxamide (SB222200), a close derivative of talnetant, was used as the radioligand. Taken together, these data strongly suggest binding of both talnetant and osanetant at the orthosteric binding site with similar kinetic properties and do not support the hypothesis that the aberrant Schild observed in functional assays for osanetant is derived from differences in the mechanism of binding for these NK3 antagonists.


Asunto(s)
Calcio/metabolismo , Piperidinas/farmacología , Quinolinas/farmacología , Receptores de Neuroquinina-3/antagonistas & inhibidores , Animales , Unión Competitiva , Células CHO , Cricetinae , Cricetulus , Cinética , Neuroquinina B/análogos & derivados , Neuroquinina B/metabolismo , Piperidinas/metabolismo , Quinolinas/metabolismo
14.
J Biol Chem ; 278(31): 28968-75, 2003 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-12719412

RESUMEN

Transition state analogs pepstatin methylester (PME) and L685458 have been shown to inhibit gamma-secretase non-competitively (Tian, G., Sobotka-Briner, C., Zysk, J., Liu, X., Birr, C., Sylvester, M. A., Edwards, P. D., Scott, C. W., and Greenberg, B. D. (2002) J. Biol. Chem. 277, 31499-31505). This unusual kinetics suggests physical separation of the sites for substrate binding and catalysis with binding of the transition state analogs to the catalytic site and not to the substrate binding site. Methods of inhibitor cross-competition kinetics and competition ligand binding were utilized to address whether non-transition state small molecule inhibitors, which also display non-competitive inhibition of gamma-secretase, inhibit the enzyme by binding to the catalytic site as well. Inhibitor cross-competition kinetics indicated competitive binding between the transition state analogs PME and L685458 and between small molecules arylsulfonamides and benzodiazepines, but non-competitive binding between the transition state analogs and the small molecule inhibitors. These results were indicative of two inhibitor binding sites, one for transition state analogs and the other for non-transition state small molecule inhibitors. The presence of two inhibitor binding sites for two different classes of inhibitors was corroborated by results from competition ligand binding using [3H]L685458 as the radioligand. Although L685458 and PME displaced the radioligand at the same concentrations as for enzyme inhibition, arylsulfonamides and benzodiazepines did not displace the radioligand at their Ki values, a result consistent with the presence of two inhibitor binding sites. These findings provide useful insights into the catalytic and regulatory mechanisms of gamma-secretase that may facilitate the design of novel gamma-secretase inhibitors.


Asunto(s)
Endopeptidasas/química , Endopeptidasas/metabolismo , Inhibidores Enzimáticos/metabolismo , Secretasas de la Proteína Precursora del Amiloide , Ácido Aspártico Endopeptidasas , Benzodiazepinas/metabolismo , Sitios de Unión , Unión Competitiva , Carbamatos/metabolismo , Catálisis , Dipéptidos/metabolismo , Humanos , Cinética , Matemática , Pepstatinas/metabolismo , Solubilidad , Sulfonamidas/metabolismo , Tritio
15.
Biochemistry ; 43(20): 6208-18, 2004 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-15147205

RESUMEN

Maturation of gamma-secretase requires an endoproteolytic cleavage in presenilin-1 (PS1) within a peptide loop encoded by exon 9 of the corresponding gene. Deletion of the loop has been demonstrated to cause familial Alzheimer's disease. A synthetic peptide corresponding to the loop sequence was found to inhibit gamma-secretase in a cell-free enzymatic assay with an IC(50) of 2.1 microM, a value similar to the K(m) (3.5 microM) for the substrate C100. Truncation at either end, single amino acid substitutions at certain residues, sequence reversal, or randomization reduced its potency. Similar results were also observed in a cell-based assay using HEK293 cells expressing APP. In contrast to small-molecule gamma-secretase inhibitors, kinetic inhibition studies demonstrated competitive inhibition of gamma-secretase by the exon 9 peptide. Consistent with this finding, inhibitor cross-competition kinetics indicated noncompetitive binding between the exon 9 peptide and L685458, a transition-state analogue presumably binding at the catalytic site, and ligand competition binding experiments revealed no competition between L685458 and the exon 9 peptide. These data are consistent with the proposed gamma-secretase mechanism involving separate substrate-binding and catalytic sites and binding of the exon 9 peptide at the substrate-binding site, but not the catalytic site of gamma-secretase. NMR analyses demonstrated the presence of a loop structure with a beta-turn in the middle of the exon 9 peptide and a loose alpha-helical conformation for the rest of the peptide. Such a structure supports the hypothesis that this exon 9 peptide can adopt a distinct conformation, one that is compact enough to occupy the putative substrate-binding site without necessarily interfering with binding of small molecule inhibitors at other sites on gamma-secretase. We hypothesize that gamma-secretase cleavage activation may be a result of a cleavage-induced conformational change that relieves the inhibitory effect of the intact exon 9 loop occupying the substrate-binding site on the immature enzyme. It is possible that the DeltaE9 mutation causes Alzheimer's disease because cleavage activation of gamma-secretase is no longer necessary, alleviating constraints on Abeta formation.


Asunto(s)
Endopeptidasas/metabolismo , Inhibidores Enzimáticos/metabolismo , Exones , Proteínas de la Membrana/química , Estructura Secundaria de Proteína , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Secuencia de Aminoácidos , Secretasas de la Proteína Precursora del Amiloide , Péptidos beta-Amiloides/metabolismo , Ácido Aspártico Endopeptidasas , Sitios de Unión , Línea Celular , Endopeptidasas/química , Activación Enzimática , Inhibidores Enzimáticos/química , Humanos , Ligandos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Molecular , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Presenilina-1
16.
J Biol Chem ; 277(35): 31499-505, 2002 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-12072428

RESUMEN

Cerebral deposition of amyloid beta-protein (A beta) is believed to play a key role in the pathogenesis of Alzheimer's disease. Because A beta is produced from the processing of amyloid beta-protein precursor (APP) by beta- and gamma-secretases, these enzymes are considered important therapeutic targets for identification of drugs to treat Alzheimer's disease. Unlike beta-secretase, which is a monomeric aspartyl protease, gamma-secretase activity resides as part of a membrane-bound, high molecular weight, macromolecular complex. Pepstatin and L685458 are among several structural classes of gamma-secretase inhibitors identified so far. These compounds possess a hydroxyethylene dipeptide isostere of aspartyl protease transition state analogs, suggesting gamma-secretase may be an aspartyl protease. However, the mechanism of inhibition of gamma-secretase by pepstatin and L685458 has not been elucidated. In this study, we report that pepstatin A methylester and L685458 unexpectedly displayed linear non-competitive inhibition of gamma-secretase. Sulfonamides and benzodiazepines, which do not resemble transition state analogs of aspartyl proteases, also displayed potent, non-competitive inhibition of gamma-secretase. Models to rationalize how transition state analogs inhibit their targets by non-competitive inhibition are discussed.


Asunto(s)
Benzodiazepinas/farmacología , Carbamatos/farmacología , Dipéptidos/farmacología , Endopeptidasas/metabolismo , Pepstatinas/farmacología , Inhibidores de Proteasas/farmacología , Sulfonamidas/farmacología , Secretasas de la Proteína Precursora del Amiloide , Ácido Aspártico Endopeptidasas , Sitios de Unión , Humanos , Cinética , Modelos Moleculares , Proteínas Recombinantes/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA