Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Opt Express ; 30(21): 39086-39100, 2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-36258457

RESUMEN

This paper presents an approach that combines the generalized multimode nonlinear Schrodinger equation with a transmission model to analyze spatiotemporal characteristics of multimode interference in single mode/large mode area fiber-graded-index multimode fiber-single mode fiber (SMF/LMA-GIMF-SMF) structures for the first time. Approximated self-imaging (ASIM) behavior in GIMF and the study of the latter structure used in spatiotemporal mode-locked fiber lasers are first demonstrated. Simulations show that these structures can work as saturable absorbers enabling high-energy pulse output due to nonlinear intermodal interactions and intensity-dependent multimode interference. Otherwise, underlying ASIM is proven that it can perturb the transmission of SMF/LMA-GIMF-SMF, causing instability of their saturable-absorption characteristics. This paper provides a theoretical guide for many applications, such as beam shaping, mode conversion, and high-energy ultrafast fiber laser.

2.
Opt Express ; 30(1): 296-307, 2022 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-35201208

RESUMEN

The amplification of random fiber lasers (RFLs) attracts much attention due to their unique characteristics such as wavelength flexibility and low coherence. We present that, in the kilowatt-level amplification of RFL operating near its lasing threshold, a broad and flat spectral pedestal can co-exist with the narrow spectral peak of RFL. This phenomenon is different from the case in the amplification of fixed-cavity laser seeds. Time-domain measurements show that the broad and flat spectral pedestal, which extends to long wavelengths, is composed of temporal pulses, while few temporal pulses exist in the narrow spectral peak. We attribute the spectral pedestal to intensity fluctuations from the random seed laser and modulation instability in the amplification stage. Control experiments reveal that the working status of the random seed laser and the effective length of the amplifier can influence the spectral bandwidth. By taking advantage of this phenomenon, we propose a novel approach to achieve a high-power broadband light source through the amplification of RFLs operating near the lasing threshold.

3.
Opt Express ; 27(3): 3136-3145, 2019 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-30732339

RESUMEN

In this paper, we demonstrated a monolithic fiber-Bragg-grating-based (FBG-based) master oscillator power amplification configuration fiber laser with a narrow linewidth at high-power level. Several approaches were implemented to reduce the seed laser linewidth and the magnification of spectrum broadening in order to achieve a narrow output linewidth. The narrow seed laser linewidth was obtained by restricting the reflection bandwidth of the FBG. To reduce the magnification of spectrum broadening, a backward pumping scheme was employed in the amplifier stage after its capacity to suppress laser spectrum broadening was preliminarily investigated experimentally. Further, by intentionally shortening the length of the active fiber in the amplifier and sharing the backward pumping power with the oscillator, the spectrum broadening was further inhibited without sacrificing optical efficiency. A maximum output power of 2.19 kW was achieved with a 3 dB spectrum bandwidth of only 86.5 pm. The beam quality at the maximum power was measured to be M2~1.46. No sign of transverse mode instability was shown during the experiments.

4.
Nat Commun ; 13(1): 1433, 2022 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-35301332

RESUMEN

Ultra-high-speed imaging serves as a foundation for modern science. While in biomedicine, optical-fiber-based endoscopy is often required for in vivo applications, the combination of high speed with the fiber endoscopy, which is vital for exploring transient biomedical phenomena, still confronts some challenges. We propose all-fiber imaging at high speeds, which is achieved based on the transformation of two-dimensional spatial information into one-dimensional temporal pulsed streams by leveraging high intermodal dispersion in a multimode fiber. Neural networks are trained to reconstruct images from the temporal waveforms. It can not only detect content-aware images with high quality, but also detect images of different kinds from the training images with slightly reduced quality. The fiber probe can detect micron-scale objects with a high frame rate (15.4 Mfps) and large frame depth (10,000). This scheme combines high speeds with high mechanical flexibility and integration and may stimulate future research exploring various phenomena in vivo.


Asunto(s)
Aprendizaje Profundo , Diagnóstico por Imagen , Endoscopía/métodos , Redes Neurales de la Computación , Fibras Ópticas
5.
Sci Rep ; 9(1): 11655, 2019 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-31406258

RESUMEN

We report an investigation of conditions for the initiation of fiber fuse (IFF), a kind of catastrophic damage that troubles all kinds of optical fibers, in silica-based optical fibers. The fibers of different chemical compositions were processed and tested in controlled conditions without mechanical damages before the IFF. For all the fibers of IFF, the same correlation between the critical temperatures and the optical powers transmitted therein was revealed for the first time. The fibers of different chemical compositions exhibited different resistances to the IFF under the threshold powers for propagation of fiber fuses. The results offered promise for predicting fiber fuses in optical fiber systems, which could facilitate avoiding catastrophic losses. They could direct the optimization of fiber production technologies for suppressing the damages, as well as open a new path towards controlled utilization of fiber fuse in in-fiber microstructure fabrication.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA