Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 186(9): 2002-2017.e21, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-37080201

RESUMEN

Paired mapping of single-cell gene expression and electrophysiology is essential to understand gene-to-function relationships in electrogenic tissues. Here, we developed in situ electro-sequencing (electro-seq) that combines flexible bioelectronics with in situ RNA sequencing to stably map millisecond-timescale electrical activity and profile single-cell gene expression from the same cells across intact biological networks, including cardiac and neural patches. When applied to human-induced pluripotent stem-cell-derived cardiomyocyte patches, in situ electro-seq enabled multimodal in situ analysis of cardiomyocyte electrophysiology and gene expression at the cellular level, jointly defining cell states and developmental trajectories. Using machine-learning-based cross-modal analysis, in situ electro-seq identified gene-to-electrophysiology relationships throughout cardiomyocyte development and accurately reconstructed the evolution of gene expression profiles based on long-term stable electrical measurements. In situ electro-seq could be applicable to create spatiotemporal multimodal maps in electrogenic tissues, potentiating the discovery of cell types and gene programs responsible for electrophysiological function and dysfunction.


Asunto(s)
Electrónica , Análisis de Secuencia de ARN , Humanos , Diferenciación Celular , Células Madre Pluripotentes Inducidas/fisiología , Miocitos Cardíacos/metabolismo , Análisis de la Célula Individual , Transcriptoma , Electrónica/métodos
2.
Mol Psychiatry ; 26(11): 6198-6208, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34385601

RESUMEN

Previous studies both in laboratory animals and humans have reported that abstinence induces incubation of cue-induced drug craving for nicotine, alcohol, cocaine, and methamphetamine. However, current experimental procedures utilized to study incubation of methamphetamine craving do not incorporate the temporal dynamics of neuropsychological measures and electrophysiological activities associated with this incubation process. This study utilized the high-density electroencephalogram (EEG) signals as a rapid, inexpensive, and noninvasive measure of cue-induced craving potential. A total of 156 male individuals with methamphetamine use disorder (MUD) enrolled in this multisite, cross-sectional study. Structured clinical interview data, self-report questionnaires (cued craving, quality of sleep, impulsivity, anxiety, and depression) and resting-state, eye-closed 128 high-density channel EEG signals were collected at 5 abstinence duration time points (<1, 1-3, 3-6, 6-12, and 12-24 months) to track the neuropsychological and neurophysiological signatures. Cue-induced craving was higher after 1-3 months than after the other time points. This incubation effect was also observed for sleep quality but not for anxiety, depression, and impulsivity symptoms, along with exhibited decreased power spectrum for theta (5.5-8 Hz) and alpha (8-13 Hz), and increased in beta (16.5-26.5 Hz) frequency band. Source reconstructed resting-state EEG analysis showed increased synchronization of medial prefrontal cortex (MPFC) for the beta frequency band in 1-3 months abstinent MUD group, and associated with the incubation of craving. Remarkably, the robust incubation-related abnormalities may be driven by beta-band source space connectivity between MPFC and bilateral orbital gyrus (ORB). Our findings suggest the enhancement of beta activity in the incubation period most likely originates from a dysfunction involving frontal brain regions. This neurophysiological signature of incubation of craving can be used to identify individuals who might be most susceptible to relapse, providing a potential insight into future therapeutic interventions for MUD via neuromodulation of beta activity.


Asunto(s)
Cocaína , Metanfetamina , Animales , Cocaína/farmacología , Ansia , Estudios Transversales , Señales (Psicología) , Masculino , Metanfetamina/farmacología
3.
Cell Rep Med ; 5(1): 101347, 2024 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-38151021

RESUMEN

Craving is central to methamphetamine use disorder (MUD) and both characterizes the disease and predicts relapse. However, there is currently a lack of robust and reliable biomarkers for monitoring craving and diagnosing MUD. Here, we seek to identify a neurobiological signature of craving based on individual-level functional connectivity pattern differences between healthy control and MUD subjects. We train high-density electroencephalography (EEG)-based models using data recorded during the resting state and then calculate imaginary coherence features between the band-limited time series across different brain regions of interest. Our prediction model demonstrates that eyes-open beta functional connectivity networks have significant predictive value for craving at the individual level and can also identify individuals with MUD. These findings advance the neurobiological understanding of craving through an EEG-tailored computational model of the brain connectome. Dissecting neurophysiological features provides a clinical avenue for personalized treatment of MUD.


Asunto(s)
Metanfetamina , Humanos , Metanfetamina/efectos adversos , Ansia/fisiología , Electroencefalografía , Encéfalo/diagnóstico por imagen
4.
Nat Neurosci ; 26(4): 696-710, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36804648

RESUMEN

Stably recording the electrical activity of the same neurons over the adult life of an animal is important to neuroscience research and biomedical applications. Current implantable devices cannot provide stable recording on this timescale. Here, we introduce a method to precisely implant electronics with an open, unfolded mesh structure across multiple brain regions in the mouse. The open mesh structure forms a stable interwoven structure with the neural network, preventing probe drifting and showing no immune response and neuron loss during the year-long implantation. Rigorous statistical analysis, visual stimulus-dependent measurement and unbiased, machine-learning-based analysis demonstrated that single-unit action potentials have been recorded from the same neurons of behaving mice in a very long-term stable manner. Leveraging this stable structure, we demonstrated that the same neurons can be recorded over the entire adult life of the mouse, revealing the aging-associated evolution of single-neuron activities.


Asunto(s)
Encéfalo , Neurociencias , Ratones , Animales , Encéfalo/fisiología , Neuronas/fisiología , Potenciales de Acción/fisiología , Electrodos Implantados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA